carrot/system/camerad/cameras/camera_common.cc
Vehicle Researcher 4fca6dec8e openpilot v0.9.8 release
date: 2025-01-29T09:09:56
master commit: 227bb68e1891619b360b89809e6822d50d34228f
2025-01-29 09:09:58 +00:00

281 lines
10 KiB
C++

#include "system/camerad/cameras/camera_common.h"
#include <cassert>
#include <string>
#include <jpeglib.h>
#include "common/clutil.h"
#include "common/swaglog.h"
#include "system/camerad/cameras/spectra.h"
class ImgProc {
public:
ImgProc(cl_device_id device_id, cl_context context, const CameraBuf *b, const SensorInfo *sensor, int camera_num, int buf_width, int uv_offset) {
char args[4096];
snprintf(args, sizeof(args),
"-cl-fast-relaxed-math -cl-denorms-are-zero -Isensors "
"-DFRAME_WIDTH=%d -DFRAME_HEIGHT=%d -DFRAME_STRIDE=%d -DFRAME_OFFSET=%d "
"-DRGB_WIDTH=%d -DRGB_HEIGHT=%d -DYUV_STRIDE=%d -DUV_OFFSET=%d "
"-DSENSOR_ID=%hu -DHDR_OFFSET=%d -DVIGNETTING=%d ",
sensor->frame_width, sensor->frame_height, sensor->hdr_offset > 0 ? sensor->frame_stride * 2 : sensor->frame_stride, sensor->frame_offset,
b->out_img_width, b->out_img_height, buf_width, uv_offset,
static_cast<unsigned short>(sensor->image_sensor), sensor->hdr_offset, camera_num == 1);
const char *cl_file = "cameras/process_raw.cl";
cl_program prg_imgproc = cl_program_from_file(context, device_id, cl_file, args);
krnl_ = CL_CHECK_ERR(clCreateKernel(prg_imgproc, "process_raw", &err));
CL_CHECK(clReleaseProgram(prg_imgproc));
const cl_queue_properties props[] = {0}; //CL_QUEUE_PRIORITY_KHR, CL_QUEUE_PRIORITY_HIGH_KHR, 0};
queue = CL_CHECK_ERR(clCreateCommandQueueWithProperties(context, device_id, props, &err));
}
void runKernel(cl_mem cam_buf_cl, cl_mem buf_cl, int width, int height, int expo_time) {
CL_CHECK(clSetKernelArg(krnl_, 0, sizeof(cl_mem), &cam_buf_cl));
CL_CHECK(clSetKernelArg(krnl_, 1, sizeof(cl_mem), &buf_cl));
CL_CHECK(clSetKernelArg(krnl_, 2, sizeof(cl_int), &expo_time));
const size_t globalWorkSize[] = {size_t(width / 2), size_t(height / 2)};
const int imgproc_local_worksize = 16;
const size_t localWorkSize[] = {imgproc_local_worksize, imgproc_local_worksize};
cl_event event;
CL_CHECK(clEnqueueNDRangeKernel(queue, krnl_, 2, NULL, globalWorkSize, localWorkSize, 0, 0, &event));
clWaitForEvents(1, &event);
CL_CHECK(clReleaseEvent(event));
}
~ImgProc() {
CL_CHECK(clReleaseKernel(krnl_));
CL_CHECK(clReleaseCommandQueue(queue));
}
private:
cl_kernel krnl_;
cl_command_queue queue;
};
void CameraBuf::init(cl_device_id device_id, cl_context context, SpectraCamera *cam, VisionIpcServer * v, int frame_cnt, VisionStreamType type) {
vipc_server = v;
stream_type = type;
frame_buf_count = frame_cnt;
const SensorInfo *sensor = cam->sensor.get();
is_raw = cam->is_raw;
frame_metadata = std::make_unique<FrameMetadata[]>(frame_buf_count);
// RAW frames from ISP
if (is_raw) {
camera_bufs_raw = std::make_unique<VisionBuf[]>(frame_buf_count);
const int raw_frame_size = (sensor->frame_height + sensor->extra_height) * sensor->frame_stride;
for (int i = 0; i < frame_buf_count; i++) {
camera_bufs_raw[i].allocate(raw_frame_size);
camera_bufs_raw[i].init_cl(device_id, context);
}
LOGD("allocated %d CL buffers", frame_buf_count);
}
out_img_width = sensor->frame_width;
out_img_height = sensor->hdr_offset > 0 ? (sensor->frame_height - sensor->hdr_offset) / 2 : sensor->frame_height;
// the encoder HW tells us the size it wants after setting it up.
// TODO: VENUS_BUFFER_SIZE should give the size, but it's too small. dependent on encoder settings?
size_t nv12_size = (out_img_width <= 1344 ? 2900 : 2346)*cam->stride;
vipc_server->create_buffers_with_sizes(stream_type, VIPC_BUFFER_COUNT, out_img_width, out_img_height, nv12_size, cam->stride, cam->uv_offset);
LOGD("created %d YUV vipc buffers with size %dx%d", VIPC_BUFFER_COUNT, cam->stride, cam->y_height);
if (is_raw) imgproc = new ImgProc(device_id, context, this, sensor, cam->cc.camera_num, cam->stride, cam->uv_offset);
}
CameraBuf::~CameraBuf() {
if (camera_bufs_raw != nullptr) {
for (int i = 0; i < frame_buf_count; i++) {
camera_bufs_raw[i].free();
}
}
if (imgproc) delete imgproc;
}
bool CameraBuf::acquire(int expo_time) {
if (!safe_queue.try_pop(cur_buf_idx, 50)) return false;
if (frame_metadata[cur_buf_idx].frame_id == -1) {
LOGE("no frame data? wtf");
return false;
}
cur_frame_data = frame_metadata[cur_buf_idx];
cur_camera_buf = &camera_bufs_raw[cur_buf_idx];
if (is_raw) {
cur_yuv_buf = vipc_server->get_buffer(stream_type);
double start_time = millis_since_boot();
imgproc->runKernel(camera_bufs_raw[cur_buf_idx].buf_cl, cur_yuv_buf->buf_cl, out_img_width, out_img_height, expo_time);
cur_frame_data.processing_time = (millis_since_boot() - start_time) / 1000.0;
} else {
cur_yuv_buf = vipc_server->get_buffer(stream_type, cur_buf_idx);
cur_frame_data.processing_time = (double)(cur_frame_data.timestamp_end_of_isp - cur_frame_data.timestamp_eof)*1e-9;
}
VisionIpcBufExtra extra = {
cur_frame_data.frame_id,
cur_frame_data.timestamp_sof,
cur_frame_data.timestamp_eof,
};
cur_yuv_buf->set_frame_id(cur_frame_data.frame_id);
vipc_server->send(cur_yuv_buf, &extra);
return true;
}
void CameraBuf::queue(size_t buf_idx) {
safe_queue.push(buf_idx);
}
// common functions
kj::Array<uint8_t> get_raw_frame_image(const CameraBuf *b) {
const uint8_t *dat = (const uint8_t *)b->cur_camera_buf->addr;
kj::Array<uint8_t> frame_image = kj::heapArray<uint8_t>(b->cur_camera_buf->len);
uint8_t *resized_dat = frame_image.begin();
memcpy(resized_dat, dat, b->cur_camera_buf->len);
return kj::mv(frame_image);
}
static kj::Array<capnp::byte> yuv420_to_jpeg(const CameraBuf *b, int thumbnail_width, int thumbnail_height) {
int downscale = b->cur_yuv_buf->width / thumbnail_width;
assert(downscale * thumbnail_height == b->cur_yuv_buf->height);
int in_stride = b->cur_yuv_buf->stride;
// make the buffer big enough. jpeg_write_raw_data requires 16-pixels aligned height to be used.
std::unique_ptr<uint8_t[]> buf(new uint8_t[(thumbnail_width * ((thumbnail_height + 15) & ~15) * 3) / 2]);
uint8_t *y_plane = buf.get();
uint8_t *u_plane = y_plane + thumbnail_width * thumbnail_height;
uint8_t *v_plane = u_plane + (thumbnail_width * thumbnail_height) / 4;
{
// subsampled conversion from nv12 to yuv
for (int hy = 0; hy < thumbnail_height/2; hy++) {
for (int hx = 0; hx < thumbnail_width/2; hx++) {
int ix = hx * downscale + (downscale-1)/2;
int iy = hy * downscale + (downscale-1)/2;
y_plane[(hy*2 + 0)*thumbnail_width + (hx*2 + 0)] = b->cur_yuv_buf->y[(iy*2 + 0) * in_stride + ix*2 + 0];
y_plane[(hy*2 + 0)*thumbnail_width + (hx*2 + 1)] = b->cur_yuv_buf->y[(iy*2 + 0) * in_stride + ix*2 + 1];
y_plane[(hy*2 + 1)*thumbnail_width + (hx*2 + 0)] = b->cur_yuv_buf->y[(iy*2 + 1) * in_stride + ix*2 + 0];
y_plane[(hy*2 + 1)*thumbnail_width + (hx*2 + 1)] = b->cur_yuv_buf->y[(iy*2 + 1) * in_stride + ix*2 + 1];
u_plane[hy*thumbnail_width/2 + hx] = b->cur_yuv_buf->uv[iy*in_stride + ix*2 + 0];
v_plane[hy*thumbnail_width/2 + hx] = b->cur_yuv_buf->uv[iy*in_stride + ix*2 + 1];
}
}
}
struct jpeg_compress_struct cinfo;
struct jpeg_error_mgr jerr;
cinfo.err = jpeg_std_error(&jerr);
jpeg_create_compress(&cinfo);
uint8_t *thumbnail_buffer = nullptr;
size_t thumbnail_len = 0;
jpeg_mem_dest(&cinfo, &thumbnail_buffer, &thumbnail_len);
cinfo.image_width = thumbnail_width;
cinfo.image_height = thumbnail_height;
cinfo.input_components = 3;
jpeg_set_defaults(&cinfo);
jpeg_set_colorspace(&cinfo, JCS_YCbCr);
// configure sampling factors for yuv420.
cinfo.comp_info[0].h_samp_factor = 2; // Y
cinfo.comp_info[0].v_samp_factor = 2;
cinfo.comp_info[1].h_samp_factor = 1; // U
cinfo.comp_info[1].v_samp_factor = 1;
cinfo.comp_info[2].h_samp_factor = 1; // V
cinfo.comp_info[2].v_samp_factor = 1;
cinfo.raw_data_in = TRUE;
jpeg_set_quality(&cinfo, 50, TRUE);
jpeg_start_compress(&cinfo, TRUE);
JSAMPROW y[16], u[8], v[8];
JSAMPARRAY planes[3]{y, u, v};
for (int line = 0; line < cinfo.image_height; line += 16) {
for (int i = 0; i < 16; ++i) {
y[i] = y_plane + (line + i) * cinfo.image_width;
if (i % 2 == 0) {
int offset = (cinfo.image_width / 2) * ((i + line) / 2);
u[i / 2] = u_plane + offset;
v[i / 2] = v_plane + offset;
}
}
jpeg_write_raw_data(&cinfo, planes, 16);
}
jpeg_finish_compress(&cinfo);
jpeg_destroy_compress(&cinfo);
kj::Array<capnp::byte> dat = kj::heapArray<capnp::byte>(thumbnail_buffer, thumbnail_len);
free(thumbnail_buffer);
return dat;
}
void publish_thumbnail(PubMaster *pm, const CameraBuf *b) {
auto thumbnail = yuv420_to_jpeg(b, b->out_img_width / 4, b->out_img_height / 4);
if (thumbnail.size() == 0) return;
MessageBuilder msg;
auto thumbnaild = msg.initEvent().initThumbnail();
thumbnaild.setFrameId(b->cur_frame_data.frame_id);
thumbnaild.setTimestampEof(b->cur_frame_data.timestamp_eof);
thumbnaild.setThumbnail(thumbnail);
pm->send("thumbnail", msg);
}
float set_exposure_target(const CameraBuf *b, Rect ae_xywh, int x_skip, int y_skip) {
int lum_med;
uint32_t lum_binning[256] = {0};
const uint8_t *pix_ptr = b->cur_yuv_buf->y;
unsigned int lum_total = 0;
for (int y = ae_xywh.y; y < ae_xywh.y + ae_xywh.h; y += y_skip) {
for (int x = ae_xywh.x; x < ae_xywh.x + ae_xywh.w; x += x_skip) {
uint8_t lum = pix_ptr[(y * b->out_img_width) + x];
lum_binning[lum]++;
lum_total += 1;
}
}
// Find mean lumimance value
unsigned int lum_cur = 0;
for (lum_med = 255; lum_med >= 0; lum_med--) {
lum_cur += lum_binning[lum_med];
if (lum_cur >= lum_total / 2) {
break;
}
}
return lum_med / 256.0;
}
int open_v4l_by_name_and_index(const char name[], int index, int flags) {
for (int v4l_index = 0; /**/; ++v4l_index) {
std::string v4l_name = util::read_file(util::string_format("/sys/class/video4linux/v4l-subdev%d/name", v4l_index));
if (v4l_name.empty()) return -1;
if (v4l_name.find(name) == 0) {
if (index == 0) {
return HANDLE_EINTR(open(util::string_format("/dev/v4l-subdev%d", v4l_index).c_str(), flags));
}
index--;
}
}
}