Vehicle Researcher 4fca6dec8e openpilot v0.9.8 release
date: 2025-01-29T09:09:56
master commit: 227bb68e1891619b360b89809e6822d50d34228f
2025-01-29 09:09:58 +00:00

139 lines
4.8 KiB
Python
Executable File

#!/usr/bin/env python3
import sys
import numpy as np
from openpilot.selfdrive.locationd.models.constants import ObservationKind
if __name__=="__main__":
import sympy as sp
from rednose.helpers.ekf_sym import gen_code
from rednose.helpers.sympy_helpers import euler_rotate, rot_to_euler
else:
from rednose.helpers.ekf_sym_pyx import EKF_sym_pyx
EARTH_G = 9.81
class States:
NED_ORIENTATION = slice(0, 3) # roll, pitch, yaw in rad
DEVICE_VELOCITY = slice(3, 6) # ned velocity in m/s
ANGULAR_VELOCITY = slice(6, 9) # roll, pitch and yaw rates in rad/s
GYRO_BIAS = slice(9, 12) # roll, pitch and yaw gyroscope biases in rad/s
ACCELERATION = slice(12, 15) # acceleration in device frame in m/s**2
ACCEL_BIAS = slice(15, 18) # Acceletometer bias in m/s**2
class PoseKalman:
name = "pose"
# state
initial_x = np.array([0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0])
# state covariance
initial_P = np.diag([0.01**2, 0.01**2, 0.01**2,
10**2, 10**2, 10**2,
1**2, 1**2, 1**2,
1**2, 1**2, 1**2,
100**2, 100**2, 100**2,
0.01**2, 0.01**2, 0.01**2])
# process noise
Q = np.diag([0.001**2, 0.001**2, 0.001**2,
0.01**2, 0.01**2, 0.01**2,
0.1**2, 0.1**2, 0.1**2,
(0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2,
3**2, 3**2, 3**2,
0.005**2, 0.005**2, 0.005**2])
obs_noise = {ObservationKind.PHONE_GYRO: np.array([0.025**2, 0.025**2, 0.025**2]),
ObservationKind.PHONE_ACCEL: np.array([.5**2, .5**2, .5**2]),
ObservationKind.CAMERA_ODO_TRANSLATION: np.array([0.5**2, 0.5**2, 0.5**2]),
ObservationKind.CAMERA_ODO_ROTATION: np.array([0.05**2, 0.05**2, 0.05**2])}
@staticmethod
def generate_code(generated_dir):
name = PoseKalman.name
dim_state = PoseKalman.initial_x.shape[0]
dim_state_err = PoseKalman.initial_P.shape[0]
state_sym = sp.MatrixSymbol('state', dim_state, 1)
state = sp.Matrix(state_sym)
roll, pitch, yaw = state[States.NED_ORIENTATION, :]
velocity = state[States.DEVICE_VELOCITY, :]
angular_velocity = state[States.ANGULAR_VELOCITY, :]
vroll, vpitch, vyaw = angular_velocity
gyro_bias = state[States.GYRO_BIAS, :]
acceleration = state[States.ACCELERATION, :]
acc_bias = state[States.ACCEL_BIAS, :]
dt = sp.Symbol('dt')
ned_from_device = euler_rotate(roll, pitch, yaw)
device_from_ned = ned_from_device.T
state_dot = sp.Matrix(np.zeros((dim_state, 1)))
state_dot[States.DEVICE_VELOCITY, :] = acceleration
f_sym = state + dt * state_dot
device_from_device_t1 = euler_rotate(dt*vroll, dt*vpitch, dt*vyaw)
ned_from_device_t1 = ned_from_device * device_from_device_t1
f_sym[States.NED_ORIENTATION, :] = rot_to_euler(ned_from_device_t1)
centripetal_acceleration = angular_velocity.cross(velocity)
gravity = sp.Matrix([0, 0, -EARTH_G])
h_gyro_sym = angular_velocity + gyro_bias
h_acc_sym = device_from_ned * gravity + acceleration + centripetal_acceleration + acc_bias
h_phone_rot_sym = angular_velocity
h_relative_motion_sym = velocity
obs_eqs = [
[h_gyro_sym, ObservationKind.PHONE_GYRO, None],
[h_acc_sym, ObservationKind.PHONE_ACCEL, None],
[h_relative_motion_sym, ObservationKind.CAMERA_ODO_TRANSLATION, None],
[h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None],
]
gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err)
def __init__(self, generated_dir, max_rewind_age):
dim_state, dim_state_err = PoseKalman.initial_x.shape[0], PoseKalman.initial_P.shape[0]
self.filter = EKF_sym_pyx(generated_dir, self.name, PoseKalman.Q, PoseKalman.initial_x, PoseKalman.initial_P,
dim_state, dim_state_err, max_rewind_age=max_rewind_age)
@property
def x(self):
return self.filter.state()
@property
def P(self):
return self.filter.covs()
@property
def t(self):
return self.filter.get_filter_time()
def predict_and_observe(self, t, kind, data, obs_noise=None):
data = np.atleast_2d(data)
if obs_noise is None:
obs_noise = self.obs_noise[kind]
R = self._get_R(len(data), obs_noise)
return self.filter.predict_and_update_batch(t, kind, data, R)
def reset(self, t, x_init, P_init):
self.filter.init_state(x_init, P_init, t)
def _get_R(self, n, obs_noise):
dim = obs_noise.shape[0]
R = np.zeros((n, dim, dim))
for i in range(n):
R[i, :, :] = np.diag(obs_noise)
return R
if __name__ == "__main__":
generated_dir = sys.argv[2]
PoseKalman.generate_code(generated_dir)