carrot/selfdrive/frogpilot/controls/lib/conditional_experimental_mode.py
FrogAi e0a97132e5 Controls - Conditional Experimental Mode - Curve Detected Ahead
Switch to 'Experimental Mode' when a curve is detected.
2024-06-01 02:34:36 -07:00

59 lines
2.7 KiB
Python

from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import interp
from openpilot.common.params import Params
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_functions import MovingAverageCalculator
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_variables import CITY_SPEED_LIMIT, CRUISING_SPEED, PROBABILITY
class ConditionalExperimentalMode:
def __init__(self):
self.params_memory = Params("/dev/shm/params")
self.curve_detected = False
self.experimental_mode = False
self.curvature_mac = MovingAverageCalculator()
self.lead_detection_mac = MovingAverageCalculator()
def update(self, carState, enabled, frogpilotNavigation, lead_distance, lead, modelData, road_curvature, slower_lead, v_ego, v_lead, frogpilot_toggles):
self.update_conditions(lead_distance, lead.status, modelData, road_curvature, slower_lead, carState.standstill, v_ego, v_lead, frogpilot_toggles)
condition_met = self.check_conditions(carState, frogpilotNavigation, lead, modelData, v_ego, frogpilot_toggles) and enabled
self.experimental_mode = condition_met
self.params_memory.put_int("CEStatus", self.status_value if condition_met else 0)
def check_conditions(self, carState, frogpilotNavigation, lead, modelData, v_ego, frogpilot_toggles):
if carState.standstill:
self.status_value = 0
return self.experimental_mode
if (not self.lead_detected and v_ego <= frogpilot_toggles.conditional_limit) or (self.lead_detected and v_ego <= frogpilot_toggles.conditional_limit_lead):
self.status_value = 11 if self.lead_detected else 12
return True
if frogpilot_toggles.conditional_curves and self.curve_detected:
self.status_value = 15
return True
return False
def update_conditions(self, lead_distance, lead_status, modelData, road_curvature, slower_lead, standstill, v_ego, v_lead, frogpilot_toggles):
self.lead_detection(lead_status)
self.road_curvature(road_curvature, v_ego, frogpilot_toggles)
def lead_detection(self, lead_status):
self.lead_detection_mac.add_data(lead_status)
self.lead_detected = self.lead_detection_mac.get_moving_average() >= PROBABILITY
def road_curvature(self, road_curvature, v_ego, frogpilot_toggles):
if frogpilot_toggles.conditional_curves_lead or not self.lead_detected:
curve_detected = (1 / road_curvature)**0.5 < v_ego
curve_active = (0.9 / road_curvature)**0.5 < v_ego and self.curve_detected
self.curvature_mac.add_data(curve_detected or curve_active)
self.curve_detected = self.curvature_mac.get_moving_average() >= PROBABILITY
else:
self.curvature_mac.reset_data()
self.curve_detected = False