carrot/selfdrive/frogpilot/controls/lib/map_turn_speed_controller.py
FrogAi 4fea7c0d28 Controls - Map Turn Speed Control
Slow down for anticipated curves detected by the downloaded maps.

Credit goes to Pfeiferj!

https: //github.com/pfeiferj
Co-Authored-By: Jacob Pfeifer <jacob@pfeifer.dev>
2024-06-01 02:34:41 -07:00

154 lines
5.1 KiB
Python

# PFEIFER - MTSC
import json
import math
from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import interp
from openpilot.common.params import Params
params_memory = Params("/dev/shm/params")
R = 6373000.0 # approximate radius of earth in meters
TO_RADIANS = math.pi / 180
TO_DEGREES = 180 / math.pi
TARGET_JERK = -0.6 # m/s^3 should match up with the long planner
TARGET_ACCEL = -1.2 # m/s^2 should match up with the long planner
TARGET_OFFSET = 1.0 # seconds - This controls how soon before the curve you reach the target velocity. It also helps
# reach the target velocity when innacuracies in the distance modeling logic would cause overshoot.
# The value is multiplied against the target velocity to determine the additional distance. This is
# done to keep the distance calculations consistent but results in the offset actually being less
# time than specified depending on how much of a speed diffrential there is between v_ego and the
# target velocity.
def calculate_accel(t, target_jerk, a_ego):
return a_ego + target_jerk * t
def calculate_velocity(t, target_jerk, a_ego, v_ego):
return v_ego + a_ego * t + target_jerk/2 * (t ** 2)
def calculate_distance(t, target_jerk, a_ego, v_ego):
return t * v_ego + a_ego/2 * (t ** 2) + target_jerk/6 * (t ** 3)
# points should be in radians
# output is meters
def distance_to_point(ax, ay, bx, by):
a = math.sin((bx-ax)/2)*math.sin((bx-ax)/2) + math.cos(ax) * math.cos(bx)*math.sin((by-ay)/2)*math.sin((by-ay)/2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
return R * c # in meters
class MapTurnSpeedController:
def __init__(self):
self.target_lat = 0.0
self.target_lon = 0.0
self.target_v = 0.0
def target_speed(self, v_ego, a_ego) -> float:
lat = 0.0
lon = 0.0
try:
position = json.loads(params_memory.get("LastGPSPosition"))
lat = position["latitude"]
lon = position["longitude"]
except: return 0.0
try:
target_velocities = json.loads(params_memory.get("MapTargetVelocities"))
except: return 0.0
min_dist = 1000
min_idx = 0
distances = []
# find our location in the path
for i in range(len(target_velocities)):
target_velocity = target_velocities[i]
tlat = target_velocity["latitude"]
tlon = target_velocity["longitude"]
d = distance_to_point(lat * TO_RADIANS, lon * TO_RADIANS, tlat * TO_RADIANS, tlon * TO_RADIANS)
distances.append(d)
if d < min_dist:
min_dist = d
min_idx = i
# only look at values from our current position forward
forward_points = target_velocities[min_idx:]
forward_distances = distances[min_idx:]
# find velocities that we are within the distance we need to adjust for
valid_velocities = []
for i in range(len(forward_points)):
target_velocity = forward_points[i]
tlat = target_velocity["latitude"]
tlon = target_velocity["longitude"]
tv = target_velocity["velocity"]
if tv > v_ego:
continue
d = forward_distances[i]
a_diff = (a_ego - TARGET_ACCEL)
accel_t = abs(a_diff / TARGET_JERK)
min_accel_v = calculate_velocity(accel_t, TARGET_JERK, a_ego, v_ego)
max_d = 0
if tv > min_accel_v:
# calculate time needed based on target jerk
a = 0.5 * TARGET_JERK
b = a_ego
c = v_ego - tv
t_a = -1 * ((b**2 - 4 * a * c) ** 0.5 + b) / 2 * a
t_b = ((b**2 - 4 * a * c) ** 0.5 - b) / 2 * a
if not isinstance(t_a, complex) and t_a > 0:
t = t_a
else:
t = t_b
if isinstance(t, complex):
continue
max_d = max_d + calculate_distance(t, TARGET_JERK, a_ego, v_ego)
else:
t = accel_t
max_d = calculate_distance(t, TARGET_JERK, a_ego, v_ego)
# calculate additional time needed based on target accel
t = abs((min_accel_v - tv) / TARGET_ACCEL)
max_d += calculate_distance(t, 0, TARGET_ACCEL, min_accel_v)
if d < max_d + tv * TARGET_OFFSET:
valid_velocities.append((float(tv), tlat, tlon))
# Find the smallest velocity we need to adjust for
min_v = 100.0
target_lat = 0.0
target_lon = 0.0
for tv, lat, lon in valid_velocities:
if tv < min_v:
min_v = tv
target_lat = lat
target_lon = lon
if self.target_v < min_v and not (self.target_lat == 0 and self.target_lon == 0):
for i in range(len(forward_points)):
target_velocity = forward_points[i]
tlat = target_velocity["latitude"]
tlon = target_velocity["longitude"]
tv = target_velocity["velocity"]
if tv > v_ego:
continue
if tlat == self.target_lat and tlon == self.target_lon and tv == self.target_v:
return float(self.target_v)
# not found so lets reset
self.target_v = 0.0
self.target_lat = 0.0
self.target_lon = 0.0
self.target_v = min_v
self.target_lat = target_lat
self.target_lon = target_lon
return min_v