carrot/selfdrive/controls/tests/test_following_distance.py
FrogAi 659adb6457 openpilot v0.9.7 release
date: 2024-03-17T10:14:38
master commit: 7e9a909e0e57ecb31df4c87c5b9a06b1204fd034
2024-05-24 17:43:27 -07:00

46 lines
1.6 KiB
Python

#!/usr/bin/env python3
import unittest
import itertools
from parameterized import parameterized_class
from cereal import log
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import desired_follow_distance, get_T_FOLLOW
from openpilot.selfdrive.test.longitudinal_maneuvers.maneuver import Maneuver
def run_following_distance_simulation(v_lead, t_end=100.0, e2e=False, personality=0):
man = Maneuver(
'',
duration=t_end,
initial_speed=float(v_lead),
lead_relevancy=True,
initial_distance_lead=100,
speed_lead_values=[v_lead],
breakpoints=[0.],
e2e=e2e,
personality=personality,
)
valid, output = man.evaluate()
assert valid
return output[-1,2] - output[-1,1]
@parameterized_class(("e2e", "personality", "speed"), itertools.product(
[True, False], # e2e
[log.LongitudinalPersonality.relaxed, # personality
log.LongitudinalPersonality.standard,
log.LongitudinalPersonality.aggressive],
[0,10,35])) # speed
class TestFollowingDistance(unittest.TestCase):
def test_following_distance(self):
v_lead = float(self.speed)
simulation_steady_state = run_following_distance_simulation(v_lead, e2e=self.e2e, personality=self.personality)
correct_steady_state = desired_follow_distance(v_lead, v_lead, get_T_FOLLOW(self.personality))
err_ratio = 0.2 if self.e2e else 0.1
self.assertAlmostEqual(simulation_steady_state, correct_steady_state, delta=(err_ratio * correct_steady_state + .5))
if __name__ == "__main__":
unittest.main()