carrot/selfdrive/frogpilot/controls/frogpilot_planner.py
FrogAi dbe15596a1 Controls - Longitudinal Tuning - Traffic Mode
Enable the ability to activate 'Traffic Mode' by holding down the 'distance' button for 2.5 seconds. When 'Traffic Mode' is active the onroad UI will turn red and openpilot will drive catered towards stop and go traffic.
2024-06-01 02:34:41 -07:00

186 lines
9.6 KiB
Python

import numpy as np
import cereal.messaging as messaging
from cereal import car, log
from openpilot.common.conversions import Conversions as CV
from openpilot.common.numpy_fast import interp
from openpilot.common.params import Params
from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX
from openpilot.selfdrive.controls.lib.drive_helpers import V_CRUISE_UNSET
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import A_CHANGE_COST, J_EGO_COST, COMFORT_BRAKE, STOP_DISTANCE, get_jerk_factor, \
get_safe_obstacle_distance, get_stopped_equivalence_factor, get_T_FOLLOW
from openpilot.selfdrive.controls.lib.longitudinal_planner import A_CRUISE_MIN, Lead, get_max_accel
from openpilot.selfdrive.frogpilot.controls.lib.conditional_experimental_mode import ConditionalExperimentalMode
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_functions import calculate_lane_width, calculate_road_curvature
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_variables import CITY_SPEED_LIMIT, CRUISING_SPEED
GearShifter = car.CarState.GearShifter
# Acceleration profiles - Credit goes to the DragonPilot team!
# MPH = [0., 18, 36, 63, 94]
A_CRUISE_MIN_BP_CUSTOM = [0., 8., 16., 28., 42.]
# MPH = [0., 6.71, 13.4, 17.9, 24.6, 33.6, 44.7, 55.9, 89.5]
A_CRUISE_MAX_BP_CUSTOM = [0., 3, 6., 8., 11., 15., 20., 25., 40.]
A_CRUISE_MIN_VALS_ECO = [-0.001, -0.010, -0.28, -0.56, -0.56]
A_CRUISE_MAX_VALS_ECO = [3.5, 3.2, 2.3, 2.0, 1.15, .80, .58, .36, .30]
A_CRUISE_MIN_VALS_SPORT = [-0.50, -0.52, -0.55, -0.57, -0.60]
A_CRUISE_MAX_VALS_SPORT = [3.5, 3.5, 3.3, 2.8, 1.5, 1.0, 0.75, 0.65, 0.6]
TRAFFIC_MODE_BP = [0., CITY_SPEED_LIMIT]
def get_min_accel_eco(v_ego):
return interp(v_ego, A_CRUISE_MIN_BP_CUSTOM, A_CRUISE_MIN_VALS_ECO)
def get_max_accel_eco(v_ego):
return interp(v_ego, A_CRUISE_MAX_BP_CUSTOM, A_CRUISE_MAX_VALS_ECO)
def get_min_accel_sport(v_ego):
return interp(v_ego, A_CRUISE_MIN_BP_CUSTOM, A_CRUISE_MIN_VALS_SPORT)
def get_max_accel_sport(v_ego):
return interp(v_ego, A_CRUISE_MAX_BP_CUSTOM, A_CRUISE_MAX_VALS_SPORT)
class FrogPilotPlanner:
def __init__(self):
self.params_memory = Params("/dev/shm/params")
self.cem = ConditionalExperimentalMode()
self.slower_lead = False
self.acceleration_jerk = 0
self.frame = 0
self.road_curvature = 0
self.speed_jerk = 0
def update(self, carState, controlsState, frogpilotCarControl, frogpilotCarState, frogpilotNavigation, liveLocationKalman, modelData, radarState, frogpilot_toggles):
self.lead_one = radarState.leadOne
v_cruise_kph = min(controlsState.vCruise, V_CRUISE_UNSET)
v_cruise = v_cruise_kph * CV.KPH_TO_MS
v_ego = max(carState.vEgo, 0)
v_lead = self.lead_one.vLead
distance_offset = max(frogpilot_toggles.increased_stopping_distance + min(CITY_SPEED_LIMIT - v_ego, 0), 0) if not frogpilotCarControl.trafficModeActive else 0
lead_distance = self.lead_one.dRel - distance_offset
stopping_distance = STOP_DISTANCE + distance_offset
if frogpilot_toggles.acceleration_profile == 1:
self.max_accel = get_max_accel_eco(v_ego)
elif frogpilot_toggles.acceleration_profile in (2, 3):
self.max_accel = get_max_accel_sport(v_ego)
elif controlsState.experimentalMode:
self.max_accel = ACCEL_MAX
else:
self.max_accel = get_max_accel(v_ego)
if controlsState.experimentalMode:
self.min_accel = ACCEL_MIN
elif frogpilot_toggles.deceleration_profile == 1:
self.min_accel = get_min_accel_eco(v_ego)
elif frogpilot_toggles.deceleration_profile == 2:
self.min_accel = get_min_accel_sport(v_ego)
else:
self.min_accel = A_CRUISE_MIN
check_lane_width = frogpilot_toggles.lane_detection
if check_lane_width and v_ego >= frogpilot_toggles.minimum_lane_change_speed:
self.lane_width_left = float(calculate_lane_width(modelData.laneLines[0], modelData.laneLines[1], modelData.roadEdges[0]))
self.lane_width_right = float(calculate_lane_width(modelData.laneLines[3], modelData.laneLines[2], modelData.roadEdges[1]))
else:
self.lane_width_left = 0
self.lane_width_right = 0
if frogpilotCarControl.trafficModeActive:
self.base_acceleration_jerk = interp(v_ego, TRAFFIC_MODE_BP, frogpilot_toggles.traffic_mode_jerk_acceleration)
self.base_speed_jerk = interp(v_ego, TRAFFIC_MODE_BP, frogpilot_toggles.traffic_mode_jerk_speed)
self.t_follow = interp(v_ego, TRAFFIC_MODE_BP, frogpilot_toggles.traffic_mode_t_follow)
else:
self.base_acceleration_jerk, self.base_speed_jerk = get_jerk_factor(frogpilot_toggles.custom_personalities,
frogpilot_toggles.aggressive_jerk_acceleration, frogpilot_toggles.aggressive_jerk_speed,
frogpilot_toggles.standard_jerk_acceleration, frogpilot_toggles.standard_jerk_speed,
frogpilot_toggles.relaxed_jerk_acceleration, frogpilot_toggles.relaxed_jerk_speed,
controlsState.personality)
self.t_follow = get_T_FOLLOW(frogpilot_toggles.custom_personalities, frogpilot_toggles.aggressive_follow,
frogpilot_toggles.standard_follow, frogpilot_toggles.relaxed_follow, controlsState.personality)
if self.lead_one.status:
self.update_follow_values(lead_distance, stopping_distance, v_ego, v_lead, frogpilot_toggles)
else:
self.acceleration_jerk = self.base_acceleration_jerk
self.speed_jerk = self.base_speed_jerk
self.road_curvature = calculate_road_curvature(modelData, v_ego)
self.v_cruise = self.update_v_cruise(carState, controlsState, frogpilotCarState, frogpilotNavigation, liveLocationKalman, modelData, v_cruise, v_ego, frogpilot_toggles)
if frogpilot_toggles.conditional_experimental_mode:
self.cem.update(carState, controlsState.enabled, frogpilotNavigation, lead_distance, self.lead_one, modelData, self.road_curvature, self.slower_lead, v_ego, v_lead, frogpilot_toggles)
self.frame += 1
def update_follow_values(self, lead_distance, stopping_distance, v_ego, v_lead, frogpilot_toggles):
# Offset by FrogAi for FrogPilot for a more natural approach to a faster lead
if frogpilot_toggles.aggressive_acceleration_experimental and v_lead > v_ego:
distance_factor = max(lead_distance - (v_ego * self.t_follow), 1)
standstill_offset = max(stopping_distance - v_ego, 0) * max(v_lead - v_ego, 0)
acceleration_offset = np.clip((v_lead - v_ego) + standstill_offset - COMFORT_BRAKE, 1, distance_factor)
self.acceleration_jerk = self.base_acceleration_jerk / acceleration_offset
self.speed_jerk = self.base_speed_jerk / acceleration_offset
self.t_follow /= acceleration_offset
elif frogpilot_toggles.aggressive_acceleration and v_lead > v_ego:
distance_factor = np.maximum(lead_distance - (v_lead * self.t_follow), 1)
standstill_offset = max(STOP_DISTANCE - (v_ego**COMFORT_BRAKE), 0)
acceleration_offset = np.clip((v_lead - v_ego) + standstill_offset - COMFORT_BRAKE, 1, distance_factor)
self.t_follow /= acceleration_offset
# Offset by FrogAi for FrogPilot for a more natural approach to a slower lead
if (frogpilot_toggles.conditional_experimental_mode or frogpilot_toggles.smoother_braking) and v_lead < v_ego:
distance_factor = max(lead_distance - (v_lead * self.t_follow), 1)
far_lead_offset = max(lead_distance - (v_ego * self.t_follow) - stopping_distance + (v_lead - CITY_SPEED_LIMIT), 0) if frogpilot_toggles.smoother_braking_far_lead else 0
braking_offset = np.clip((v_ego - v_lead) + far_lead_offset - COMFORT_BRAKE, 1, distance_factor)
if frogpilot_toggles.smoother_braking:
if frogpilot_toggles.smoother_braking_jerk:
self.acceleration_jerk = self.base_acceleration_jerk * min(braking_offset, COMFORT_BRAKE / 2)
self.speed_jerk = self.base_speed_jerk * min(braking_offset, COMFORT_BRAKE * 2)
self.t_follow /= braking_offset
self.slower_lead = max(braking_offset - far_lead_offset, 1) > 1
def update_v_cruise(self, carState, controlsState, frogpilotCarState, frogpilotNavigation, liveLocationKalman, modelData, v_cruise, v_ego, frogpilot_toggles):
v_cruise_cluster = max(controlsState.vCruiseCluster, controlsState.vCruise) * CV.KPH_TO_MS
v_cruise_diff = v_cruise_cluster - v_cruise
v_ego_cluster = max(carState.vEgoCluster, v_ego)
v_ego_diff = v_ego_cluster - v_ego
targets = []
filtered_targets = [target if target > CRUISING_SPEED else v_cruise for target in targets]
return min(filtered_targets)
def publish(self, sm, pm, frogpilot_toggles):
frogpilot_plan_send = messaging.new_message('frogpilotPlan')
frogpilot_plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState'])
frogpilotPlan = frogpilot_plan_send.frogpilotPlan
frogpilotPlan.accelerationJerk = A_CHANGE_COST * float(self.acceleration_jerk)
frogpilotPlan.accelerationJerkStock = A_CHANGE_COST * float(self.base_acceleration_jerk)
frogpilotPlan.speedJerk = J_EGO_COST * float(self.speed_jerk)
frogpilotPlan.speedJerkStock = J_EGO_COST * float(self.base_speed_jerk)
frogpilotPlan.tFollow = float(self.t_follow)
frogpilotPlan.conditionalExperimental = self.cem.experimental_mode
frogpilotPlan.maxAcceleration = self.max_accel
frogpilotPlan.minAcceleration = self.min_accel
frogpilotPlan.vCruise = float(self.v_cruise)
pm.send('frogpilotPlan', frogpilot_plan_send)