315 lines
17 KiB
Python
315 lines
17 KiB
Python
from collections import deque
|
|
|
|
import math
|
|
import numpy as np
|
|
|
|
from cereal import log
|
|
from openpilot.common.filter_simple import FirstOrderFilter
|
|
from openpilot.selfdrive.modeld.constants import ModelConstants
|
|
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N
|
|
|
|
from opendbc.car.interfaces import LatControlInputs
|
|
from openpilot.selfdrive.controls.lib.latcontrol import LatControl
|
|
from openpilot.common.pid import PIDController
|
|
from openpilot.selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
|
|
from openpilot.common.params import Params
|
|
|
|
# At higher speeds (25+mph) we can assume:
|
|
# Lateral acceleration achieved by a specific car correlates to
|
|
# torque applied to the steering rack. It does not correlate to
|
|
# wheel slip, or to speed.
|
|
|
|
# This controller applies torque to achieve desired lateral
|
|
# accelerations. To compensate for the low speed effects we
|
|
# use a LOW_SPEED_FACTOR in the error. Additionally, there is
|
|
# friction in the steering wheel that needs to be overcome to
|
|
# move it at all, this is compensated for too.
|
|
|
|
LOW_SPEED_X = [0, 10, 20, 30]
|
|
LOW_SPEED_Y = [15, 13, 10, 5]
|
|
LOW_SPEED_Y_NN = [12, 3, 1, 0]
|
|
|
|
LAT_PLAN_MIN_IDX = 5
|
|
|
|
def get_predicted_lateral_jerk(lat_accels, t_diffs):
|
|
# compute finite difference between subsequent model_data.acceleration.y values
|
|
# this is just two calls of np.diff followed by an element-wise division
|
|
lat_accel_diffs = np.diff(lat_accels)
|
|
lat_jerk = lat_accel_diffs / t_diffs
|
|
# return as python list
|
|
return lat_jerk.tolist()
|
|
|
|
def sign(x):
|
|
return 1.0 if x > 0.0 else (-1.0 if x < 0.0 else 0.0)
|
|
|
|
def get_lookahead_value(future_vals, current_val):
|
|
if len(future_vals) == 0:
|
|
return current_val
|
|
|
|
same_sign_vals = [v for v in future_vals if sign(v) == sign(current_val)]
|
|
|
|
# if any future val has opposite sign of current val, return 0
|
|
if len(same_sign_vals) < len(future_vals):
|
|
return 0.0
|
|
|
|
# otherwise return the value with minimum absolute value
|
|
min_val = min(same_sign_vals + [current_val], key=lambda x: abs(x))
|
|
return min_val
|
|
|
|
# At a given roll, if pitch magnitude increases, the
|
|
# gravitational acceleration component starts pointing
|
|
# in the longitudinal direction, decreasing the lateral
|
|
# acceleration component. Here we do the same thing
|
|
# to the roll value itself, then passed to nnff.
|
|
def roll_pitch_adjust(roll, pitch):
|
|
return roll * math.cos(pitch)
|
|
|
|
class LatControlTorque(LatControl):
|
|
def __init__(self, CP, CI):
|
|
super().__init__(CP, CI)
|
|
self.torque_params = CP.lateralTuning.torque.as_builder()
|
|
self.pid = PIDController(self.torque_params.kp, self.torque_params.ki,
|
|
k_f=self.torque_params.kf, pos_limit=self.steer_max, neg_limit=-self.steer_max)
|
|
self.torque_from_lateral_accel = CI.torque_from_lateral_accel()
|
|
self.use_steering_angle = self.torque_params.useSteeringAngle
|
|
self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg
|
|
|
|
# carrot
|
|
self.frame = 0
|
|
self.params = Params()
|
|
self.lateralTorqueCustom = self.params.get_int("LateralTorqueCustom")
|
|
self.latAccelFactor_default = self.torque_params.latAccelFactor
|
|
self.latAccelOffset_default = self.torque_params.latAccelOffset
|
|
self.friction_default = self.torque_params.friction
|
|
self.dampingFactor = 0
|
|
self.error_last = 0.0
|
|
|
|
# Twilsonco's Lateral Neural Network Feedforward
|
|
self.use_nnff = CI.use_nnff
|
|
self.use_nnff_lite = CI.use_nnff_lite
|
|
|
|
if self.use_nnff or self.use_nnff_lite:
|
|
# Instantaneous lateral jerk changes very rapidly, making it not useful on its own,
|
|
# however, we can "look ahead" to the future planned lateral jerk in order to guage
|
|
# whether the current desired lateral jerk will persist into the future, i.e.
|
|
# whether it's "deliberate" or not. This lets us simply ignore short-lived jerk.
|
|
# Note that LAT_PLAN_MIN_IDX is defined above and is used in order to prevent
|
|
# using a "future" value that is actually planned to occur before the "current" desired
|
|
# value, which is offset by the steerActuatorDelay.
|
|
self.friction_look_ahead_v = [1.4, 2.0] # how many seconds in the future to look ahead in [0, ~2.1] in 0.1 increments
|
|
self.friction_look_ahead_bp = [9.0, 30.0] # corresponding speeds in m/s in [0, ~40] in 1.0 increments
|
|
|
|
# Scaling the lateral acceleration "friction response" could be helpful for some.
|
|
# Increase for a stronger response, decrease for a weaker response.
|
|
self.lat_jerk_friction_factor = 0.4
|
|
self.lat_accel_friction_factor = 0.7 # in [0, 3], in 0.05 increments. 3 is arbitrary safety limit
|
|
|
|
# precompute time differences between ModelConstants.T_IDXS
|
|
self.t_diffs = np.diff(ModelConstants.T_IDXS)
|
|
self.desired_lat_jerk_time = self.params.get_float("SteerActuatorDelay") * 0.01 + 0.3
|
|
|
|
if self.use_nnff:
|
|
self.pitch = FirstOrderFilter(0.0, 0.5, 0.01)
|
|
# NN model takes current v_ego, lateral_accel, lat accel/jerk error, roll, and past/future/planned data
|
|
# of lat accel and roll
|
|
# Past value is computed using previous desired lat accel and observed roll
|
|
self.torque_from_nn = CI.get_ff_nn
|
|
self.nn_friction_override = CI.lat_torque_nn_model.friction_override
|
|
|
|
# setup future time offsets
|
|
self.nn_time_offset = CP.steerActuatorDelay + 0.2
|
|
future_times = [0.3, 0.6, 1.0, 1.5] # seconds in the future
|
|
self.nn_future_times = [i + self.nn_time_offset for i in future_times]
|
|
self.nn_future_times_np = np.array(self.nn_future_times)
|
|
|
|
# setup past time offsets
|
|
self.past_times = [-0.3, -0.2, -0.1]
|
|
history_check_frames = [int(abs(i)*100) for i in self.past_times]
|
|
self.history_frame_offsets = [history_check_frames[0] - i for i in history_check_frames]
|
|
self.lateral_accel_desired_deque = deque(maxlen=history_check_frames[0])
|
|
self.roll_deque = deque(maxlen=history_check_frames[0])
|
|
self.error_deque = deque(maxlen=history_check_frames[0])
|
|
self.past_future_len = len(self.past_times) + len(self.nn_future_times)
|
|
|
|
|
|
def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction):
|
|
if self.lateralTorqueCustom > 0:
|
|
return
|
|
|
|
self.torque_params.latAccelFactor = latAccelFactor
|
|
self.torque_params.latAccelOffset = latAccelOffset
|
|
self.torque_params.friction = friction
|
|
|
|
def update(self, active, CS, VM, params, steer_limited, desired_curvature, llk, model_data=None):
|
|
self.frame += 1
|
|
if self.frame % 10 == 0:
|
|
lateralTorqueCustom = self.params.get_int("LateralTorqueCustom")
|
|
self.dampingFactor = self.params.get_float("DampingFactor") * 0.01
|
|
if lateralTorqueCustom > 0:
|
|
self.torque_params.latAccelFactor = self.params.get_float("LateralTorqueAccelFactor")*0.001
|
|
self.torque_params.friction = self.params.get_float("LateralTorqueFriction")*0.001
|
|
lateralTorqueKp = self.params.get_float("LateralTorqueKpV")*0.01
|
|
lateralTorqueKi = self.params.get_float("LateralTorqueKiV")*0.01
|
|
lateralTorqueKf = self.params.get_float("LateralTorqueKf")*0.01
|
|
lateralTorqueKd = self.params.get_float("LateralTorqueKd")*0.01
|
|
self.pid._k_p = [[0], [lateralTorqueKp]]
|
|
self.pid._k_i = [[0], [lateralTorqueKi]]
|
|
self.pid.k_f = lateralTorqueKf
|
|
self.pid._k_d = [[0], [lateralTorqueKd]]
|
|
self.torque_params.latAccelOffset = self.latAccelOffset_default
|
|
elif self.lateralTorqueCustom > 1: # 1 -> 0, reset to default
|
|
self.torque_params.latAccelFactor = self.latAccelFactor_default
|
|
self.torque_params.friction = self.friction_default
|
|
self.torque_params.latAccelOffset = self.latAccelOffset_default
|
|
self.lateralTorqueCustom = lateralTorqueCustom
|
|
|
|
pid_log = log.ControlsState.LateralTorqueState.new_message()
|
|
nn_log = None
|
|
|
|
steeringRate = math.radians(CS.steeringRateDeg)
|
|
if not active:
|
|
output_torque = 0.0
|
|
pid_log.active = False
|
|
angle_steers_des = float(CS.steeringAngleDeg)
|
|
else:
|
|
angle_steers_des = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll))
|
|
angle_steers_des += params.angleOffsetDeg
|
|
|
|
actual_curvature_vm = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
|
|
roll_compensation = params.roll * ACCELERATION_DUE_TO_GRAVITY
|
|
actual_lateral_jerk = 0.0
|
|
if self.use_steering_angle:
|
|
actual_curvature = actual_curvature_vm
|
|
curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0))
|
|
if self.use_nnff or self.use_nnff_lite:
|
|
actual_curvature_rate = -VM.calc_curvature(math.radians(CS.steeringRateDeg), CS.vEgo, 0.0)
|
|
actual_lateral_jerk = actual_curvature_rate * CS.vEgo ** 2
|
|
else:
|
|
actual_curvature_llk = llk.angularVelocityCalibrated.value[2] / CS.vEgo
|
|
actual_curvature = interp(CS.vEgo, [2.0, 5.0], [actual_curvature_vm, actual_curvature_llk])
|
|
curvature_deadzone = 0.0
|
|
desired_lateral_accel = desired_curvature * CS.vEgo ** 2
|
|
|
|
# desired rate is the desired rate of change in the setpoint, not the absolute desired curvature
|
|
# desired_lateral_jerk = desired_curvature_rate * CS.vEgo ** 2
|
|
actual_lateral_accel = actual_curvature * CS.vEgo ** 2
|
|
lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2
|
|
|
|
low_speed_factor = np.interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y)**2
|
|
desired_lateral_accel = desired_curvature * CS.vEgo ** 2
|
|
setpoint = desired_lateral_accel + low_speed_factor * desired_curvature
|
|
measurement = actual_lateral_accel + low_speed_factor * actual_curvature
|
|
|
|
lateral_jerk_setpoint = 0
|
|
lateral_jerk_measurement = 0
|
|
lookahead_lateral_jerk = 0
|
|
|
|
model_good = model_data is not None and len(model_data.orientation.x) >= CONTROL_N
|
|
if model_good and (self.use_nnff or self.use_nnff_lite):
|
|
# prepare "look-ahead" desired lateral jerk
|
|
lookahead = np.interp(CS.vEgo, self.friction_look_ahead_bp, self.friction_look_ahead_v)
|
|
friction_upper_idx = next((i for i, val in enumerate(ModelConstants.T_IDXS) if val > lookahead), 16)
|
|
predicted_lateral_jerk = get_predicted_lateral_jerk(model_data.acceleration.y, self.t_diffs)
|
|
desired_lateral_jerk = (np.interp(self.desired_lat_jerk_time, ModelConstants.T_IDXS, model_data.acceleration.y) - desired_lateral_accel) / self.desired_lat_jerk_time
|
|
lookahead_lateral_jerk = get_lookahead_value(predicted_lateral_jerk[LAT_PLAN_MIN_IDX:friction_upper_idx], desired_lateral_jerk)
|
|
|
|
if self.use_steering_angle or lookahead_lateral_jerk == 0.0:
|
|
lookahead_lateral_jerk = 0.0
|
|
actual_lateral_jerk = 0.0
|
|
self.lat_accel_friction_factor = 1.0
|
|
lateral_jerk_setpoint = self.lat_jerk_friction_factor * lookahead_lateral_jerk
|
|
lateral_jerk_measurement = self.lat_jerk_friction_factor * actual_lateral_jerk
|
|
|
|
if self.use_nnff and model_good:
|
|
# update past data
|
|
pitch = 0
|
|
roll = params.roll
|
|
if len(llk.calibratedOrientationNED.value) > 1:
|
|
pitch = self.pitch.update(llk.calibratedOrientationNED.value[1])
|
|
roll = roll_pitch_adjust(roll, pitch)
|
|
self.roll_deque.append(roll)
|
|
self.lateral_accel_desired_deque.append(desired_lateral_accel)
|
|
|
|
# prepare past and future values
|
|
# adjust future times to account for longitudinal acceleration
|
|
adjusted_future_times = [t + 0.5*CS.aEgo*(t/max(CS.vEgo, 1.0)) for t in self.nn_future_times]
|
|
past_rolls = [self.roll_deque[min(len(self.roll_deque)-1, i)] for i in self.history_frame_offsets]
|
|
future_rolls = [roll_pitch_adjust(np.interp(t, ModelConstants.T_IDXS, model_data.orientation.x) + roll, np.interp(t, ModelConstants.T_IDXS, model_data.orientation.y) + pitch) for t in adjusted_future_times]
|
|
past_lateral_accels_desired = [self.lateral_accel_desired_deque[min(len(self.lateral_accel_desired_deque)-1, i)] for i in self.history_frame_offsets]
|
|
future_planned_lateral_accels = [np.interp(t, ModelConstants.T_IDXS, model_data.acceleration.y) for t in adjusted_future_times]
|
|
|
|
# compute NNFF error response
|
|
nnff_setpoint_input = [CS.vEgo, setpoint, lateral_jerk_setpoint, roll] \
|
|
+ [setpoint] * self.past_future_len \
|
|
+ past_rolls + future_rolls
|
|
# past lateral accel error shouldn't count, so use past desired like the setpoint input
|
|
nnff_measurement_input = [CS.vEgo, measurement, lateral_jerk_measurement, roll] \
|
|
+ [measurement] * self.past_future_len \
|
|
+ past_rolls + future_rolls
|
|
torque_from_setpoint = self.torque_from_nn(nnff_setpoint_input)
|
|
torque_from_measurement = self.torque_from_nn(nnff_measurement_input)
|
|
|
|
pid_log.error = float(torque_from_setpoint - torque_from_measurement)
|
|
error_blend_factor = np.interp(abs(desired_lateral_accel), [1.0, 2.0], [0.0, 1.0])
|
|
if error_blend_factor > 0.0: # blend in stronger error response when in high lat accel
|
|
nnff_error_input = [CS.vEgo, setpoint - measurement, lateral_jerk_setpoint - lateral_jerk_measurement, 0.0]
|
|
torque_from_error = self.torque_from_nn(nnff_error_input)
|
|
if sign(pid_log.error) == sign(torque_from_error) and abs(pid_log.error) < abs(torque_from_error):
|
|
pid_log.error = float(pid_log.error * (1.0 - error_blend_factor) + torque_from_error * error_blend_factor)
|
|
|
|
# compute feedforward (same as nn setpoint output)
|
|
error = setpoint - measurement
|
|
friction_input = self.lat_accel_friction_factor * error + self.lat_jerk_friction_factor * lookahead_lateral_jerk
|
|
nn_input = [CS.vEgo, desired_lateral_accel, friction_input, roll] \
|
|
+ past_lateral_accels_desired + future_planned_lateral_accels \
|
|
+ past_rolls + future_rolls
|
|
ff = self.torque_from_nn(nn_input)
|
|
|
|
# apply friction override for cars with low NN friction response
|
|
if self.nn_friction_override:
|
|
pid_log.error += self.torque_from_lateral_accel(LatControlInputs(0.0, 0.0, CS.vEgo, CS.aEgo), self.torque_params,
|
|
friction_input, lateral_accel_deadzone, friction_compensation=True, gravity_adjusted=False)
|
|
nn_log = nn_input + nnff_setpoint_input + nnff_measurement_input
|
|
|
|
else:
|
|
gravity_adjusted_lateral_accel = desired_lateral_accel - roll_compensation
|
|
torque_from_setpoint = self.torque_from_lateral_accel(LatControlInputs(setpoint, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
|
|
lateral_jerk_setpoint, lateral_accel_deadzone, friction_compensation=self.use_nnff_lite, gravity_adjusted=False)
|
|
torque_from_measurement = self.torque_from_lateral_accel(LatControlInputs(measurement, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
|
|
lateral_jerk_measurement, lateral_accel_deadzone, friction_compensation=self.use_nnff_lite, gravity_adjusted=False)
|
|
pid_log.error = float(torque_from_setpoint - torque_from_measurement)
|
|
error = desired_lateral_accel - actual_lateral_accel
|
|
if self.use_nnff_lite:
|
|
friction_input = self.lat_accel_friction_factor * error + self.lat_jerk_friction_factor * lookahead_lateral_jerk
|
|
else:
|
|
friction_input = error
|
|
ff = self.torque_from_lateral_accel(LatControlInputs(gravity_adjusted_lateral_accel, roll_compensation, CS.vEgo, CS.aEgo), self.torque_params,
|
|
friction_input, lateral_accel_deadzone, friction_compensation=True,
|
|
gravity_adjusted=True)
|
|
|
|
freeze_integrator = steer_limited or CS.steeringPressed or CS.vEgo < 5
|
|
output_torque = self.pid.update(pid_log.error,
|
|
error_rate=pid_log.error - self.error_last,
|
|
feedforward=ff,
|
|
speed=CS.vEgo,
|
|
freeze_integrator=freeze_integrator)
|
|
|
|
damping_torque = - self.dampingFactor * steeringRate
|
|
output_torque += damping_torque
|
|
|
|
self.error_last = pid_log.error
|
|
pid_log.active = True
|
|
pid_log.p = float(self.pid.p)
|
|
pid_log.i = float(self.pid.i)
|
|
pid_log.d = float(self.pid.d)
|
|
pid_log.f = float(self.pid.f)
|
|
pid_log.output = float(-output_torque)
|
|
pid_log.actualLateralAccel = float(actual_lateral_accel)
|
|
pid_log.desiredLateralAccel = float(desired_lateral_accel)
|
|
pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited))
|
|
#if nn_log is not None:
|
|
# pid_log.nnLog = nn_log
|
|
|
|
# TODO left is positive in this convention
|
|
return -output_torque,angle_steers_des, pid_log
|