Vehicle Researcher b2f2dabe71 openpilot v0.9.5 release
date: 2023-11-17T23:53:40
master commit: d3aad9ca4601ae0a448ed971c1cd151c7c1eb690
2023-11-17 23:53:40 +00:00

53 lines
3.8 KiB
Python

import numpy as np
import operator
from typing import Callable, Dict, Tuple, Optional
from tinygrad.helpers import dtypes, DType
from tinygrad.ops import BufferOps, UnaryOps, BinaryOps, MovementOps, ReduceOps, TernaryOps, Op, Interpreted
from tinygrad.runtime.lib import RawBuffer
def shape_to_axis(old_shape:Tuple[int, ...], new_shape:Tuple[int, ...]) -> Tuple[int, ...]:
assert len(old_shape) == len(new_shape), "reduce shapes must have same dimensions"
return tuple(i for i,(a,b) in enumerate(zip(old_shape, new_shape)) if a != b)
base_fxn_for_op: Dict[Op, Callable] = {
BufferOps.MEM: lambda x: x._buf, UnaryOps.NEG: operator.neg, BinaryOps.ADD: operator.add, BinaryOps.SUB: operator.sub, BinaryOps.MUL: operator.mul, BinaryOps.DIV: operator.truediv,
ReduceOps.SUM: lambda x, new_shape: x.sum(shape_to_axis(x.shape, new_shape), keepdims=True) if tuple(x.shape) != tuple(new_shape) else x[:],
ReduceOps.MAX: lambda x, new_shape: (x.amax if hasattr(x, 'amax') else x.max)(shape_to_axis(x.shape, new_shape), keepdims=True) if tuple(x.shape) != tuple(new_shape) else x[:],
MovementOps.RESHAPE: lambda x, arg: x.reshape(arg), MovementOps.SHRINK: lambda x, arg: x[tuple(slice(p[0], p[1], None) for p in arg)],
}
def match_types(x, y):
up = x.dtype if dtypes.from_np(x.dtype).priority > dtypes.from_np(y.dtype).priority else y.dtype
return x.astype(up, copy=False), y.astype(up, copy=False)
def einsum_mulacc(einsum, get_strides, expand):
def einscripts(x): return ''.join(["abcdefghijklmnopqrstuvwxyz"[i] for i in x])
def axes_slice(strides): return [i for i,s in enumerate(strides) if s != 0], tuple([slice(None) if s != 0 else 0 for i,s in enumerate(strides)])
def mulacc(a, b, new_shape):
(a_axes, a_slices), (b_axes, b_slices) = axes_slice(get_strides(a)), axes_slice(get_strides(b))
out = [i for i in range(len(new_shape)) if a.shape[i] == new_shape[i] and (i in a_axes or i in b_axes)]
ret = einsum(f"{einscripts(a_axes)}, {einscripts(b_axes)} -> {einscripts(out)}", a[a_slices], b[b_slices])
return expand(ret.reshape([(1 if i not in a_axes and i not in b_axes else s) for i,s in enumerate(new_shape)]), new_shape)
return mulacc
numpy_fxn_for_op: Dict[Op, Callable] = {**base_fxn_for_op, **{
BufferOps.CONST: lambda val, dtype: np.array(val, dtype=dtype.np),
UnaryOps.NOOP: lambda x: np.require(x, requirements='C'), UnaryOps.EXP2: np.exp2, UnaryOps.LOG2: np.log2, UnaryOps.SIN: np.sin,
UnaryOps.CAST: lambda x,y: x.view(y[0].np) if y[1] else x.astype(y[0].np, copy=False),
BinaryOps.MAX: np.maximum, BinaryOps.CMPLT: lambda x,y: (x<y).astype(np.promote_types(x.dtype,y.dtype)), BinaryOps.ADD: lambda x, y: np.add(*match_types(x, y)),
BinaryOps.SUB: lambda x, y: np.subtract(*match_types(x, y)), BinaryOps.MUL: lambda x, y: np.multiply(*match_types(x, y)),
BinaryOps.DIV: lambda x, y: np.divide(*match_types(x, y)), UnaryOps.SQRT: np.sqrt,
MovementOps.PERMUTE: lambda x, order: x.transpose(order), MovementOps.PAD: np.pad, MovementOps.EXPAND: np.broadcast_to,
MovementOps.STRIDE: lambda x, arg: x[tuple(slice(None, None, i) for i in arg)],
MovementOps.AS_STRIDED: lambda x, arg: np.ndarray(arg[0], buffer=np.require(x, requirements='C'), dtype=x.dtype, offset=arg[2]*x.dtype.itemsize, strides=tuple(y*x.dtype.itemsize for y in arg[1])),
TernaryOps.MULACC: einsum_mulacc(lambda s,a,b: np.einsum(s, *match_types(a.copy(), b.copy()), optimize=True), lambda x: x.strides, np.broadcast_to),
TernaryOps.WHERE: np.where,
}}
class RawNumpyBuffer(RawBuffer):
def __init__(self, size:int, dtype:DType, buf:Optional[np.ndarray]=None): super().__init__(size, dtype, buf if buf is not None else np.empty([size], dtype.np))
@classmethod
def fromCPU(cls, x): return cls(x.size, dtypes.from_np(x.dtype), x)
def toCPU(self): return self._buf
CPUBuffer = Interpreted(RawNumpyBuffer, numpy_fxn_for_op, from_underlying=RawNumpyBuffer.fromCPU)