carrot/tinygrad_repo/test/unit/test_disk_tensor.py
carrot efee1712aa
KerryGoldModel, AGNOS12.3, ButtonMode3, autoDetectLFA2, (#181)
* fix.. speed_limit error...

* draw tpms settings.

* fix.. traffic light stopping only..

* fix.. waze cam

* fix.. waze...

* add setting (Enable comma connect )

* auto detect LFA2

* fix.. cruisespeed1

* vff2 driving model.

* fix..

* agnos 12.3

* fix..

* ff

* ff

* test

* ff

* fix.. drawTurnInfo..

* Update drive_helpers.py

* fix..

support eng  voice

eng sounds

fix settings... english

fix.. mph..

fix.. roadlimit speed bug..

* new vff model.. 250608

* fix soundd..

* fix safe exit speed..

* fix.. sounds.

* fix.. radar timeStep..

* KerryGold model

* Update drive_helpers.py

* fix.. model.

* fix..

* fix..

* Revert "fix.."

This reverts commit b09ec459afb855c533d47fd7e8a1a6b1a09466e7.

* Revert "fix.."

This reverts commit 290bec6b83a4554ca232d531a911edccf94a2156.

* fix esim

* add more acc table. 10kph

* kg update..

* fix cruisebutton mode3

* test atc..cond.

* fix.. canfd

* fix.. angle control limit
2025-06-13 15:59:36 +09:00

413 lines
18 KiB
Python

import pathlib, tempfile, unittest
import numpy as np
from tinygrad import Tensor, Device, dtypes
from tinygrad.dtype import DType
from tinygrad.nn.state import safe_load, safe_save, get_state_dict, torch_load
from tinygrad.helpers import Timing, fetch, temp, CI, OSX
from tinygrad.device import is_dtype_supported
def compare_weights_both(url):
import torch
fn = fetch(url)
tg_weights = get_state_dict(torch_load(fn))
torch_weights = get_state_dict(torch.load(fn, map_location=torch.device('cpu'), weights_only=False), tensor_type=torch.Tensor)
assert list(tg_weights.keys()) == list(torch_weights.keys())
for k in tg_weights:
if tg_weights[k].dtype == dtypes.bfloat16: tg_weights[k] = torch_weights[k].float() # numpy doesn't support bfloat16
if torch_weights[k].dtype == torch.bfloat16: torch_weights[k] = torch_weights[k].float() # numpy doesn't support bfloat16
if torch_weights[k].requires_grad: torch_weights[k] = torch_weights[k].detach()
np.testing.assert_equal(tg_weights[k].numpy(), torch_weights[k].numpy(), err_msg=f"mismatch at {k}, {tg_weights[k].shape}")
print(f"compared {len(tg_weights)} weights")
class TestTorchLoad(unittest.TestCase):
# pytorch pkl format
def test_load_enet(self): compare_weights_both("https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth")
# pytorch zip format
def test_load_enet_alt(self): compare_weights_both("https://download.pytorch.org/models/efficientnet_b0_rwightman-3dd342df.pth")
# pytorch zip format
def test_load_convnext(self): compare_weights_both('https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth')
@unittest.skipUnless(is_dtype_supported(dtypes.float16), "need float16 support")
def test_load_llama2bfloat(self): compare_weights_both("https://huggingface.co/qazalin/bf16-lightweight/resolve/main/consolidated.00.pth?download=true")
# pytorch tar format
def test_load_resnet(self): compare_weights_both('https://download.pytorch.org/models/resnet50-19c8e357.pth')
test_fn = pathlib.Path(__file__).parents[2] / "weights/LLaMA/7B/consolidated.00.pth"
#test_size = test_fn.stat().st_size
test_size = 1024*1024*1024*2
def _test_bitcasted(t: Tensor, dt: DType, expected):
np.testing.assert_allclose(t.bitcast(dt).numpy(), expected)
# sudo su -c 'sync; echo 1 > /proc/sys/vm/drop_caches' && python3 test/unit/test_disk_tensor.py TestRawDiskBuffer.test_readinto_read_speed
class TestRawDiskBuffer(unittest.TestCase):
@unittest.skipIf(not test_fn.exists(), "download LLaMA weights for read in speed tests")
def test_readinto_read_speed(self):
tst = np.empty(test_size, np.uint8)
with open(test_fn, "rb") as f:
with Timing("copy in ", lambda et_ns: f" {test_size/et_ns:.2f} GB/s"):
f.readinto(tst)
def test_bitcasts_on_disk(self):
_, tmp = tempfile.mkstemp()
# ground truth = https://evanw.github.io/float-toy/
t = Tensor.empty((128, 128), dtype=dtypes.uint8, device=f"disk:{tmp}") # uint8
# all zeroes
_test_bitcasted(t, dtypes.float16, 0.0)
_test_bitcasted(t, dtypes.uint16, 0)
_test_bitcasted(t, dtypes.float32, 0.0)
_test_bitcasted(t, dtypes.uint32, 0)
# pi in float16 stored via int16
t.bitcast(dtypes.uint16).assign(Tensor.full((128, 64), 0x4248, dtype=dtypes.uint16)).realize()
_test_bitcasted(t, dtypes.float16, 3.140625)
_test_bitcasted(t, dtypes.float32, 50.064727)
_test_bitcasted(t, dtypes.uint16, 0x4248)
_test_bitcasted(t, dtypes.uint32, 0x42484248)
# pi in float32 stored via float32
t.bitcast(dtypes.float32).assign(Tensor.full((128, 32), 3.1415927, dtype=dtypes.float32)).realize()
_test_bitcasted(t, dtypes.float32, 3.1415927)
_test_bitcasted(t, dtypes.uint32, 0x40490FDB)
# doesn't suport normal cast
with self.assertRaises(NotImplementedError):
Tensor.empty((4,), dtype=dtypes.int16, device=f"disk:{tmp}").cast(dtypes.float16).realize()
# Those two should be moved to test_dtype.py:test_shape_change_bitcast after bitcast works on non-disk
with self.assertRaises(RuntimeError):
# should fail because 3 int8 is 3 bytes but float16 is two and 3 isn't a multiple of 2
Tensor.empty((3,), dtype=dtypes.int8, device=f"DISK:{tmp}").bitcast(dtypes.float16)
with self.assertRaises(RuntimeError):
# should fail because backprop through bitcast is undefined
Tensor.empty((4,), dtype=dtypes.int8, requires_grad=True, device=f"DISK:{tmp}").bitcast(dtypes.float16)
pathlib.Path(tmp).unlink()
@unittest.skipUnless(is_dtype_supported(dtypes.uint8), "need uint8")
class TestSafetensors(unittest.TestCase):
def test_real_safetensors(self):
import torch
from safetensors.torch import save_file
torch.manual_seed(1337)
tensors = {
"weight1": torch.randn((16, 16)),
"weight2": torch.arange(0, 17, dtype=torch.uint8),
"weight3": torch.arange(0, 17, dtype=torch.int32).reshape(17,1,1),
"weight4": torch.arange(0, 2, dtype=torch.uint8),
}
save_file(tensors, temp("real.safetensors"))
ret = safe_load(temp("real.safetensors"))
for k,v in tensors.items(): np.testing.assert_array_equal(ret[k].numpy(), v.numpy())
safe_save(ret, temp("real.safetensors_alt"))
with open(temp("real.safetensors"), "rb") as f:
with open(temp("real.safetensors_alt"), "rb") as g:
assert f.read() == g.read()
ret2 = safe_load(temp("real.safetensors_alt"))
for k,v in tensors.items(): np.testing.assert_array_equal(ret2[k].numpy(), v.numpy())
def test_real_safetensors_open(self):
fn = temp("real_safe")
state_dict = {"tmp": Tensor.rand(10,10)}
safe_save(state_dict, fn)
import os
assert os.path.getsize(fn) == 8+0x40+(10*10*4)
from safetensors import safe_open
with safe_open(fn, framework="pt", device="cpu") as f:
assert sorted(f.keys()) == sorted(state_dict.keys())
for k in f.keys():
np.testing.assert_array_equal(f.get_tensor(k).numpy(), state_dict[k].numpy())
def test_efficientnet_safetensors(self):
from extra.models.efficientnet import EfficientNet
model = EfficientNet(0)
state_dict = get_state_dict(model)
safe_save(state_dict, temp("eff0"))
state_dict_loaded = safe_load(temp("eff0"))
assert sorted(state_dict_loaded.keys()) == sorted(state_dict.keys())
for k,v in state_dict.items():
np.testing.assert_array_equal(v.numpy(), state_dict_loaded[k].numpy())
# load with the real safetensors
from safetensors import safe_open
with safe_open(temp("eff0"), framework="pt", device="cpu") as f:
assert sorted(f.keys()) == sorted(state_dict.keys())
for k in f.keys():
np.testing.assert_array_equal(f.get_tensor(k).numpy(), state_dict[k].numpy())
def _test_huggingface_enet_safetensors(self, fn):
state_dict = safe_load(fn)
assert len(state_dict.keys()) == 244
assert 'blocks.2.2.se.conv_reduce.weight' in state_dict
assert state_dict['blocks.0.0.bn1.num_batches_tracked'].numpy() == 276570
assert state_dict['blocks.2.0.bn2.num_batches_tracked'].numpy() == 276570
def test_huggingface_enet_safetensors(self):
# test a real file
fn = fetch("https://huggingface.co/timm/mobilenetv3_small_075.lamb_in1k/resolve/main/model.safetensors")
self._test_huggingface_enet_safetensors(fn)
def test_huggingface_enet_safetensors_fromurl(self):
# test tensor input
t = Tensor.from_url("https://huggingface.co/timm/mobilenetv3_small_075.lamb_in1k/resolve/main/model.safetensors")
self._test_huggingface_enet_safetensors(t)
def test_metadata(self):
metadata = {"hello": "world"}
safe_save({}, temp('metadata.safetensors'), metadata)
import struct
with open(temp('metadata.safetensors'), 'rb') as f:
dat = f.read()
sz = struct.unpack(">Q", dat[0:8])[0]
import json
assert json.loads(dat[8:8+sz])['__metadata__']['hello'] == 'world'
def test_save_all_dtypes(self):
for dtype in dtypes.fields().values():
if dtype in [dtypes.bfloat16]: continue # not supported in numpy
if dtype in [dtypes.double, *dtypes.fp8s] and Device.DEFAULT == "METAL": continue # not supported on METAL
path = temp(f"ones.{dtype}.safetensors")
ones = Tensor(np.random.rand(10,10), dtype=dtype)
safe_save(get_state_dict(ones), path)
np.testing.assert_equal(ones.numpy(), list(safe_load(path).values())[0].numpy())
def test_load_supported_types(self):
import torch
from safetensors.torch import save_file
from safetensors.numpy import save_file as np_save_file
torch.manual_seed(1337)
tensors = {
"weight_F16": torch.randn((2, 2), dtype=torch.float16),
"weight_F32": torch.randn((2, 2), dtype=torch.float32),
"weight_U8": torch.tensor([1, 2, 3], dtype=torch.uint8),
"weight_I8": torch.tensor([-1, 2, 3], dtype=torch.int8),
"weight_I32": torch.tensor([-1, 2, 3], dtype=torch.int32),
"weight_I64": torch.tensor([-1, 2, 3], dtype=torch.int64),
"weight_F64": torch.randn((2, 2), dtype=torch.double),
"weight_BOOL": torch.tensor([True, False], dtype=torch.bool),
"weight_I16": torch.tensor([127, 64], dtype=torch.short),
"weight_BF16": torch.randn((2, 2), dtype=torch.bfloat16),
}
save_file(tensors, temp("dtypes.safetensors"))
loaded = safe_load(temp("dtypes.safetensors"))
for k,v in loaded.items():
if v.dtype != dtypes.bfloat16:
assert v.numpy().dtype == tensors[k].numpy().dtype
np.testing.assert_allclose(v.numpy(), tensors[k].numpy())
# pytorch does not support U16, U32, and U64 dtypes.
tensors = {
"weight_U16": np.array([1, 2, 3], dtype=np.uint16),
"weight_U32": np.array([1, 2, 3], dtype=np.uint32),
"weight_U64": np.array([1, 2, 3], dtype=np.uint64),
}
np_save_file(tensors, temp("dtypes.safetensors"))
loaded = safe_load(temp("dtypes.safetensors"))
for k,v in loaded.items():
assert v.numpy().dtype == tensors[k].dtype
np.testing.assert_allclose(v.numpy(), tensors[k])
def helper_test_disk_tensor(fn, data, np_fxn, tinygrad_fxn=None):
if tinygrad_fxn is None: tinygrad_fxn = np_fxn
pathlib.Path(temp(fn)).unlink(missing_ok=True)
tinygrad_tensor = Tensor(data, device="CPU").to(f"disk:{temp(fn)}")
numpy_arr = np.array(data)
tinygrad_fxn(tinygrad_tensor)
np_fxn(numpy_arr)
np.testing.assert_allclose(tinygrad_tensor.numpy(), numpy_arr)
class TestDiskTensor(unittest.TestCase):
def test_empty(self):
pathlib.Path(temp("dt_empty")).unlink(missing_ok=True)
Tensor.empty(100, 100, device=f"disk:{temp('dt_empty')}")
def test_simple_read(self):
fn = pathlib.Path(temp("dt_simple_read"))
fn.unlink(missing_ok=True)
fn.write_bytes(bytes(range(256)))
t = Tensor.empty(16, 16, device=f"disk:{temp('dt_simple_read')}", dtype=dtypes.uint8)
out = t[1].to(Device.DEFAULT).tolist()
assert out == list(range(16, 32))
def test_simple_read_bitcast(self):
fn = pathlib.Path(temp("dt_simple_read_bitcast"))
fn.unlink(missing_ok=True)
fn.write_bytes(bytes(range(256))*2)
t = Tensor.empty(16, 16*2, device=f"disk:{temp('dt_simple_read_bitcast')}", dtype=dtypes.uint8)
out = t[1].bitcast(dtypes.uint16).to(Device.DEFAULT).tolist()
tout = [(x//256, x%256) for x in out]
assert tout == list([(x+1,x) for x in range(32,64,2)])
def test_simple_read_bitcast_alt(self):
fn = pathlib.Path(temp("dt_simple_read_bitcast_alt"))
fn.unlink(missing_ok=True)
fn.write_bytes(bytes(range(256))*2)
t = Tensor.empty(16, 16*2, device=f"disk:{temp('dt_simple_read_bitcast_alt')}", dtype=dtypes.uint8)
out = t.bitcast(dtypes.uint16)[1].to(Device.DEFAULT).tolist()
tout = [(x//256, x%256) for x in out]
assert tout == list([(x+1,x) for x in range(32,64,2)])
def test_write_ones(self):
pathlib.Path(temp("dt_write_ones")).unlink(missing_ok=True)
out = Tensor.ones(10, 10, device="CPU").contiguous()
outdisk = out.to(f"disk:{temp('dt_write_ones')}")
print(outdisk)
outdisk.realize()
del out, outdisk
import struct
# test file
with open(temp("dt_write_ones"), "rb") as f:
assert f.read() == struct.pack('<f', 1.0) * 100 == b"\x00\x00\x80\x3F" * 100
# test load alt
reloaded = Tensor.empty(10, 10, device=f"disk:{temp('dt_write_ones')}")
np.testing.assert_almost_equal(reloaded.numpy(), np.ones((10, 10)))
def test_simple_setitem(self):
pathlib.Path(temp(fn:="dt_simple_setitem")).unlink(missing_ok=True)
data = [[1],[2]]
src = Tensor(data)
dt = src.to(f"disk:{temp(fn)}")
dt[1] = [3]
self.assertEqual(dt.tolist(), [[1], [3]])
def test_assign_slice(self):
def assign(x,s,y): x[s] = y
helper_test_disk_tensor("dt_assign_slice_1", [0,1,2,3], lambda x: assign(x, slice(0,2), [13, 12]))
helper_test_disk_tensor("dt_assign_slice_2", [[0,1,2,3],[4,5,6,7]], lambda x: assign(x, slice(0,1), [[13, 12, 11, 10]]))
def test_reshape(self):
helper_test_disk_tensor("dt_reshape_1", [1,2,3,4,5], lambda x: x.reshape((1,5)))
helper_test_disk_tensor("dt_reshape_2", [1,2,3,4], lambda x: x.reshape((2,2)))
def test_assign_to_different_dtype(self):
# NOTE: this is similar to Y_train in fetch_cifar
t = Tensor.empty(10, device=f'disk:{temp("dt_assign_to_different_dtype")}', dtype=dtypes.int64)
for i in range(5):
data = np.array([3, 3])
idx = 2 * i
t[idx:idx+2].assign(data)
np.testing.assert_array_equal(t.numpy(), np.array([3] * 10))
def test_bitcast(self):
with open(temp('dt_bitcast'), "wb") as f: f.write(bytes(range(10,20)))
t = Tensor.empty(5, dtype=dtypes.int16, device=f"disk:{temp('dt_bitcast')}")
ret = t.to("CPU").bitcast(dtypes.uint16) + 1
assert ret.tolist() == [2827, 3341, 3855, 4369, 4883]
def test_bitcast_view(self):
with open(temp('dt_bitcast_view'), "wb") as f: f.write(bytes(range(10, 24)))
t = Tensor.empty(3, dtype=dtypes.uint, device=f"disk:{temp('dt_bitcast_view')}").shrink([(0, 2)])
ret = t.bitcast(dtypes.uint16).to("CPU") + 1
assert ret.tolist() == [2827, 3341, 3855, 4369]
@unittest.skipIf(OSX, "new LLVM has an issue on OSX")
def test_bf16_disk_write_read(self):
t = Tensor([10000, -1, -1000, -10000, 20], dtype=dtypes.float32)
t.to(f"disk:{temp('dt_bf16_disk_write_read_f32')}").realize()
# hack to "cast" f32 -> bf16
with open(temp('dt_bf16_disk_write_read_f32'), "rb") as f: dat = f.read()
adat = b''.join([dat[i+2:i+4] for i in range(0, len(dat), 4)])
with open(temp('dt_bf16_disk_write_read_bf16'), "wb") as f: f.write(adat)
t = Tensor.empty(5, dtype=dtypes.bfloat16, device=f"disk:{temp('dt_bf16_disk_write_read_bf16')}")
ct = t.llvm_bf16_cast(dtypes.float)
assert ct.numpy().tolist() == [9984., -1, -1000, -9984, 20]
def test_copy_from_disk(self):
fn = pathlib.Path(temp("dt_copy_from_disk"))
fn.unlink(missing_ok=True)
fn.write_bytes(bytes(range(256))*1024)
t = Tensor.empty(256*1024, device=f"disk:{temp('dt_copy_from_disk')}", dtype=dtypes.uint8)
on_dev = t.to(Device.DEFAULT).realize()
np.testing.assert_equal(on_dev.numpy(), t.numpy())
def test_copy_from_disk_offset(self):
fn = pathlib.Path(temp("dt_copy_from_disk_offset"))
fn.unlink(missing_ok=True)
fn.write_bytes(bytes(range(256))*1024)
for off in [314, 991, 2048, 4096]:
t = Tensor.empty(256*1024, device=f"disk:{temp('dt_copy_from_disk_offset')}", dtype=dtypes.uint8)[off:]
on_dev = t.to(Device.DEFAULT).realize()
np.testing.assert_equal(on_dev.numpy(), t.numpy())
def test_copy_from_disk_huge(self):
if CI and not hasattr(Device["DISK"], 'io_uring'): self.skipTest("slow on ci without iouring")
fn = pathlib.Path(temp("dt_copy_from_disk_huge"))
fn.unlink(missing_ok=True)
fn.write_bytes(bytes(range(256))*1024*256)
for off in [0, 551]:
t = Tensor.empty(256*1024*256, device=f"disk:{temp('dt_copy_from_disk_huge')}", dtype=dtypes.uint8)[off:]
on_dev = t.to(Device.DEFAULT).realize()
np.testing.assert_equal(on_dev.numpy(), t.numpy())
@unittest.skipUnless(OSX, "seems to only be an issue on macOS with file size >2 GiB")
def test_copy_to_cpu_not_truncated(self):
with open((fn:=temp("dt_copy_to_cpu_not_truncated")), "wb") as f: f.write(b'\x01' * (size := int(2 * 1024**3)) + (test := b"test"))
x = Tensor.empty(size + len(test), dtype=dtypes.uint8, device=f"disk:{fn}").to("CPU").realize()
assert x[size:].data().tobytes() == test
class TestPathTensor(unittest.TestCase):
def setUp(self):
self.temp_dir = tempfile.TemporaryDirectory()
self.test_file = pathlib.Path(self.temp_dir.name) / "test_file.bin"
self.test_data = np.arange(100, dtype=np.uint8).tobytes()
with open(self.test_file, "wb") as f:
f.write(self.test_data)
def tearDown(self):
self.temp_dir.cleanup()
def test_path_tensor_no_device(self):
t = Tensor(self.test_file)
self.assertEqual(t.shape, (100,))
self.assertEqual(t.dtype, dtypes.uint8)
self.assertTrue(t.device.startswith("DISK:"))
np.testing.assert_array_equal(t.numpy(), np.frombuffer(self.test_data, dtype=np.uint8))
def test_path_tensor_with_device(self):
t = Tensor(self.test_file, device="CPU")
self.assertEqual(t.shape, (100,))
self.assertEqual(t.dtype, dtypes.uint8)
self.assertEqual(t.device, "CPU")
np.testing.assert_array_equal(t.numpy(), np.frombuffer(self.test_data, dtype=np.uint8))
def test_path_tensor_empty_file(self):
empty_file = pathlib.Path(self.temp_dir.name) / "empty_file.bin"
empty_file.touch()
t = Tensor(empty_file)
self.assertEqual(t.shape, (0,))
self.assertEqual(t.dtype, dtypes.uint8)
self.assertTrue(t.device.startswith("DISK:"))
def test_path_tensor_non_existent_file(self):
non_existent_file = pathlib.Path(self.temp_dir.name) / "non_existent.bin"
with self.assertRaises(FileNotFoundError):
Tensor(non_existent_file)
def test_path_tensor_with_dtype(self):
t = Tensor(self.test_file, dtype=dtypes.int16)
self.assertEqual(t.shape, (50,))
self.assertEqual(t.dtype, dtypes.int16)
self.assertTrue(t.device.startswith("DISK:"))
np.testing.assert_array_equal(t.numpy(), np.frombuffer(self.test_data, dtype=np.int16))
def test_path_tensor_copy_to_device(self):
t = Tensor(self.test_file)
t_cpu = t.to("CPU")
self.assertEqual(t_cpu.device, "CPU")
np.testing.assert_array_equal(t_cpu.numpy(), np.frombuffer(self.test_data, dtype=np.uint8))
if __name__ == "__main__":
unittest.main()