carrot/tinygrad_repo/test/test_softmax_fusion.py
carrot efee1712aa
KerryGoldModel, AGNOS12.3, ButtonMode3, autoDetectLFA2, (#181)
* fix.. speed_limit error...

* draw tpms settings.

* fix.. traffic light stopping only..

* fix.. waze cam

* fix.. waze...

* add setting (Enable comma connect )

* auto detect LFA2

* fix.. cruisespeed1

* vff2 driving model.

* fix..

* agnos 12.3

* fix..

* ff

* ff

* test

* ff

* fix.. drawTurnInfo..

* Update drive_helpers.py

* fix..

support eng  voice

eng sounds

fix settings... english

fix.. mph..

fix.. roadlimit speed bug..

* new vff model.. 250608

* fix soundd..

* fix safe exit speed..

* fix.. sounds.

* fix.. radar timeStep..

* KerryGold model

* Update drive_helpers.py

* fix.. model.

* fix..

* fix..

* Revert "fix.."

This reverts commit b09ec459afb855c533d47fd7e8a1a6b1a09466e7.

* Revert "fix.."

This reverts commit 290bec6b83a4554ca232d531a911edccf94a2156.

* fix esim

* add more acc table. 10kph

* kg update..

* fix cruisebutton mode3

* test atc..cond.

* fix.. canfd

* fix.. angle control limit
2025-06-13 15:59:36 +09:00

177 lines
6.3 KiB
Python

import unittest
import numpy as np
from tinygrad import Tensor, GlobalCounters, Context, Device
from tinygrad.dtype import DTypeLike, dtypes
from tinygrad.helpers import DEBUG, get_single_element
from tinygrad.engine.realize import lower_schedule_item
from tinygrad.device import is_dtype_supported
def single_kernel_softmax(x_in:Tensor, axis=-1, dtype:DTypeLike|None=None) -> Tensor:
# only support axis =-1
x = x_in.reshape(-1, x_in.shape[-1])
nr_dim, r_dim = x.shape
inp = x.reshape(nr_dim, 1, 1, r_dim).expand(nr_dim, r_dim, 1, r_dim)
imx = x.reshape(nr_dim, 1, r_dim, 1).expand(nr_dim, r_dim, r_dim, r_dim).max(axis=-2, keepdim=True)
m = inp - imx.detach()
if dtype is not None: m = m.cast(dtype)
e = m.exp()
ss = e.sum(axis=-1, keepdim=True)
inp = x.reshape(nr_dim, r_dim, 1, 1)
imx = x.reshape(nr_dim, 1, r_dim, 1).expand(nr_dim, r_dim, r_dim, 1).max(axis=-2, keepdim=True)
m = inp - imx.detach()
if dtype is not None: m = m.cast(dtype)
e = m.exp()
out = e.div(ss).reshape(x_in.shape)
return out
def run_one_schedule_item(out): lower_schedule_item(get_single_element(out.schedule())).run()
class TestFuse(unittest.TestCase):
def _test_fuse(self, fxn, *args, atol=1e-7, allow_multiple=False, **kwargs):
GlobalCounters.reset()
out_single = fxn(*args, **kwargs).fuse()
if not allow_multiple: run_one_schedule_item(out_single)
np_single = out_single.numpy()
GlobalCounters.reset()
np_multi = fxn(*args, **kwargs).numpy()
np.testing.assert_allclose(np_single, np_multi, atol=atol)
def test_fuse_norm(self):
a = Tensor.rand(50,50).realize()
self._test_fuse(lambda a: a / a.mean(axis=1), a)
def test_fuse_argmax(self):
a = Tensor.rand(50,50).realize()
self._test_fuse(lambda a: a.argmax(axis=-1), a)
def test_fuse_softmax(self):
a = Tensor.rand(50,50).realize()
self._test_fuse(lambda a: a.softmax(axis=-1), a)
def test_fuse_gemm_softmax(self):
a = Tensor.rand(50,50).realize()
b = Tensor.rand(50,50).realize()
self._test_fuse(lambda a,b: ((a@b).relu()+a).contiguous().softmax(axis=-1), a,b, allow_multiple=True)
@unittest.skipUnless(is_dtype_supported(dtypes.float16, Device.DEFAULT), f"no float16 on {Device.DEFAULT}")
def test_fuse_softmax_dtype(self):
a = Tensor.rand(50,50).realize()
self._test_fuse(lambda a: a.softmax(axis=-1, dtype='half'), a, atol=3e-4)
def test_fuse_arange_eye(self):
self._test_fuse(lambda: Tensor.arange(10).reshape(10,1).expand(10,10) == Tensor.arange(10).reshape(1,10).expand(10,10))
def test_double_gemm(self):
N = 32
with Context(TRACK_MATCH_STATS=0, DEBUG=0):
a = (Tensor.rand(N,N)-0.5).realize()
b = (Tensor.rand(N,N)-0.5).realize()
c = (Tensor.rand(N,N)-0.5).realize()
self._test_fuse(lambda a,b,c: a@b@c, a, b, c, atol=1e-5)
def test_embedding(self):
with Context(TRACK_MATCH_STATS=0, DEBUG=0):
vocab_sz = 123
embed_sz = 16
weight = (Tensor.rand(vocab_sz, embed_sz)-0.5).realize()
a = Tensor([1, 1, 2, 3]).realize()
def embedding(idx:Tensor):
arange = Tensor.arange(vocab_sz).unsqueeze(-1)
big_shp = idx.shape + (vocab_sz, embed_sz)
arange, vals = arange.expand(big_shp), weight.expand(big_shp)
idx = idx.reshape(idx.shape+(1, 1)).expand(big_shp)
return (arange == idx).mul(vals).sum(-2, dtype=vals.dtype)
self._test_fuse(embedding, a, atol=1e-5)
@unittest.skip("still broken")
def test_flash_attention(self):
BS = 4
HEADS = 2
MATDIM = 16
EMB = 8
with Context(TRACK_MATCH_STATS=0, DEBUG=0):
q = Tensor.randn(BS, HEADS, MATDIM, EMB).realize()
k = Tensor.randn(BS, HEADS, MATDIM, EMB).realize()
v = Tensor.randn(BS, HEADS, MATDIM, EMB).realize()
# TODO: OPT is breaking things. NOOPT isn't linearizing
with Context(NOOPT=1):
self._test_fuse(Tensor.scaled_dot_product_attention, q, k, v)
class TestSoftmaxFusion(unittest.TestCase):
@classmethod
def setUpClass(cls):
with Context(TRACK_MATCH_STATS=0): cls.test = Tensor.rand(32, 10).contiguous().realize()
def setUp(self):
GlobalCounters.reset()
def test_norm(self):
print("*** norm ***")
with Context(NOOPT=1, DEBUG=max(DEBUG.value, 2)):
# NOTE: there's an implied expand on the mean here
sout = self.test / self.test.mean(-1, keepdim=True)
sout.realize()
print("*** single kernel norm ***")
with Context(NOOPT=1, DEBUG=max(DEBUG.value, 2)):
inp = self.test.reshape(32, 10, 1)
div = self.test.reshape(32, 1, 10).expand(32, 10, 10).mean(axis=-1, keepdim=True)
out = (inp / div).reshape(32, 10)
out.realize()
np.testing.assert_allclose(sout.numpy(), out.numpy())
def test_softmax(self):
# this is the softmax from scaled_dot_product_attention
# it becomes 3 kernels
print("*** softmax ***")
with Context(NOOPT=1, DEBUG=max(DEBUG.value, 2)):
sout = self.test.softmax(-1)
sout.realize()
print("*** single kernel softmax ***")
# NOTE: DONT_GROUP_REDUCES is required here
with Context(NOOPT=1, DEBUG=max(DEBUG.value, 2), DONT_GROUP_REDUCES=1):
out = single_kernel_softmax(self.test)
out.realize()
np.testing.assert_allclose(sout.numpy(), out.numpy())
def test_auto_softmax(self):
print("*** softmax ***")
with Context(NOOPT=1, DEBUG=max(DEBUG.value, 2)):
sout = self.test.softmax(-1)
sout.realize()
print("*** auto single kernel softmax ***")
with Context(NOOPT=1, DEBUG=max(DEBUG.value, 2)):
out = self.test.contiguous().softmax(-1).fuse()
run_one_schedule_item(out)
np.testing.assert_allclose(sout.numpy(), out.numpy())
def test_softmax_bw(self):
print("*** softmax bw ***")
self.test.requires_grad_()
with Context(NOOPT=1, DEBUG=max(DEBUG.value, 2)):
self.test.softmax(-1).sum().backward()
sg = self.test.grad.realize()
self.test.grad = None
print("*** single kernel softmax bw ***")
# NOTE: DONT_GROUP_REDUCES is required here
# TODO: fix RecursionError with DONT_GROUP_REDUCES
with self.assertRaises(RecursionError):
with Context(NOOPT=1, DEBUG=max(DEBUG.value, 2), DONT_GROUP_REDUCES=1):
single_kernel_softmax(self.test).sum().backward()
g = self.test.grad.realize()
np.testing.assert_allclose(sg.numpy(), g.numpy(), atol=1e-7)
if __name__ == '__main__':
unittest.main()