Vehicle Researcher 8eb8330d95 openpilot v0.9.9 release
date: 2025-03-08T09:09:29
master commit: ce355250be726f9bc8f0ac165a6cde41586a983d
2025-03-08 09:09:31 +00:00

95 lines
3.4 KiB
Python

# https://github.com/mlcommons/training/blob/master/image_segmentation/pytorch/model/losses.py
import torch
import torch.nn as nn
import torch.nn.functional as F
class Dice:
def __init__(self,
to_onehot_y: bool = True,
to_onehot_x: bool = False,
use_softmax: bool = True,
use_argmax: bool = False,
include_background: bool = False,
layout: str = "NCDHW"):
self.include_background = include_background
self.to_onehot_y = to_onehot_y
self.to_onehot_x = to_onehot_x
self.use_softmax = use_softmax
self.use_argmax = use_argmax
self.smooth_nr = 1e-6
self.smooth_dr = 1e-6
self.layout = layout
def __call__(self, prediction, target):
if self.layout == "NCDHW":
channel_axis = 1
reduce_axis = list(range(2, len(prediction.shape)))
else:
channel_axis = -1
reduce_axis = list(range(1, len(prediction.shape) - 1))
num_pred_ch = prediction.shape[channel_axis]
if self.use_softmax:
prediction = torch.softmax(prediction, dim=channel_axis)
elif self.use_argmax:
prediction = torch.argmax(prediction, dim=channel_axis)
if self.to_onehot_y:
target = to_one_hot(target, self.layout, channel_axis)
if self.to_onehot_x:
prediction = to_one_hot(prediction, self.layout, channel_axis)
if not self.include_background:
assert num_pred_ch > 1, \
f"To exclude background the prediction needs more than one channel. Got {num_pred_ch}."
if self.layout == "NCDHW":
target = target[:, 1:]
prediction = prediction[:, 1:]
else:
target = target[..., 1:]
prediction = prediction[..., 1:]
assert (target.shape == prediction.shape), \
f"Target and prediction shape do not match. Target: ({target.shape}), prediction: ({prediction.shape})."
intersection = torch.sum(target * prediction, dim=reduce_axis)
target_sum = torch.sum(target, dim=reduce_axis)
prediction_sum = torch.sum(prediction, dim=reduce_axis)
return (2.0 * intersection + self.smooth_nr) / (target_sum + prediction_sum + self.smooth_dr)
def to_one_hot(array, layout, channel_axis):
if len(array.shape) >= 5:
array = torch.squeeze(array, dim=channel_axis)
array = F.one_hot(array.long(), num_classes=3)
if layout == "NCDHW":
array = array.permute(0, 4, 1, 2, 3).float()
return array
class DiceCELoss(nn.Module):
def __init__(self, to_onehot_y, use_softmax, layout, include_background):
super(DiceCELoss, self).__init__()
self.dice = Dice(to_onehot_y=to_onehot_y, use_softmax=use_softmax, layout=layout,
include_background=include_background)
self.cross_entropy = nn.CrossEntropyLoss()
def forward(self, y_pred, y_true):
cross_entropy = self.cross_entropy(y_pred, torch.squeeze(y_true, dim=1).long())
dice = torch.mean(1.0 - self.dice(y_pred, y_true))
return (dice + cross_entropy) / 2
class DiceScore:
def __init__(self, to_onehot_y: bool = True, use_argmax: bool = True, layout: str = "NCDHW",
include_background: bool = False):
self.dice = Dice(to_onehot_y=to_onehot_y, to_onehot_x=True, use_softmax=False,
use_argmax=use_argmax, layout=layout, include_background=include_background)
def __call__(self, y_pred, y_true):
return torch.mean(self.dice(y_pred, y_true), dim=0)