2025-04-19 08:05:49 +09:00

30 lines
950 B
Python

import unittest
from tinygrad.helpers import getenv
import torch
import tinygrad.frontend.torch
torch.set_default_device("tiny")
import numpy as np
@unittest.skipIf(getenv("GPUS",1)<=1, "only single GPU")
class TestTorchBackendMultiGPU(unittest.TestCase):
def test_transfer(self):
a = torch.Tensor([[1,2],[3,4]]).to("tiny:0")
b = torch.Tensor([[3,2],[1,0]]).to("tiny:1")
self.assertNotEqual(a.device, b.device)
np.testing.assert_array_equal(a.cpu(), a.to("tiny:1").cpu())
np.testing.assert_array_equal(b.cpu(), b.to("tiny:1").cpu())
def test_basic_ops(self):
a = torch.Tensor([[1,2],[3,4]]).to("tiny:0")
b = torch.Tensor([[3,2],[1,0]]).to("tiny:1")
c1 = a + b.to("tiny:0")
c2 = b + a.to("tiny:1")
np.testing.assert_array_equal(c1.cpu(), torch.full((2,2),4).cpu())
np.testing.assert_array_equal(c1.cpu(), c2.cpu())
# TODO: torch.distributed functions
if __name__ == "__main__":
unittest.main()