FrogAi 659adb6457 openpilot v0.9.7 release
date: 2024-03-17T10:14:38
master commit: 7e9a909e0e57ecb31df4c87c5b9a06b1204fd034
2024-05-24 17:43:27 -07:00

48 lines
1.7 KiB
Python

#!/usr/bin/env python
import unittest
import numpy as np
from tinygrad.tensor import Tensor
from models.rnnt import LSTM
import torch
class TestRNNT(unittest.TestCase):
def test_lstm(self):
BS, SQ, IS, HS, L = 2, 20, 40, 128, 2
# create in torch
with torch.no_grad():
torch_layer = torch.nn.LSTM(IS, HS, L)
# create in tinygrad
layer = LSTM(IS, HS, L, 0.0)
# copy weights
with torch.no_grad():
layer.cells[0].weights_ih.assign(Tensor(torch_layer.weight_ih_l0.numpy()))
layer.cells[0].weights_hh.assign(Tensor(torch_layer.weight_hh_l0.numpy()))
layer.cells[0].bias_ih.assign(Tensor(torch_layer.bias_ih_l0.numpy()))
layer.cells[0].bias_hh.assign(Tensor(torch_layer.bias_hh_l0.numpy()))
layer.cells[1].weights_ih.assign(Tensor(torch_layer.weight_ih_l1.numpy()))
layer.cells[1].weights_hh.assign(Tensor(torch_layer.weight_hh_l1.numpy()))
layer.cells[1].bias_ih.assign(Tensor(torch_layer.bias_ih_l1.numpy()))
layer.cells[1].bias_hh.assign(Tensor(torch_layer.bias_hh_l1.numpy()))
# test initial hidden
for _ in range(3):
x = Tensor.randn(SQ, BS, IS)
z, hc = layer(x, None)
torch_x = torch.tensor(x.numpy())
torch_z, torch_hc = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3)
# test passing hidden
for _ in range(3):
x = Tensor.randn(SQ, BS, IS)
z, hc = layer(x, hc)
torch_x = torch.tensor(x.numpy())
torch_z, torch_hc = torch_layer(torch_x, torch_hc)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3)
if __name__ == '__main__':
unittest.main()