carrot a87f8b3376
AGNOS12.1, fix Lanemode, stock cruise mode, radar reaction factor.. (#172)
* camera SCC stockLongSupport, fix.. visionTrack velocity

* for lanemode test...

* fix.. lanemode..

* remove mpc cost

* remove lane adjust curve offset and using laneoffset

* fix..

* fix unit..

* Revert "remove mpc cost"

This reverts commit 1d3ed8ef3212b467a094261ababc2d6f45c1e714.

* fix dbc(LFAHDA_CLUSTER) unknown bit.

* Revert "remove lane adjust curve offset and using laneoffset"

This reverts commit c244173c1196dc2fc0bf92c638a9d5bed961cac1.

* fix

* remove curveoffset, fix lane delay(0.06)/offset(0.06) setting

* fix latSmoothSec(0.13)

* a_lead_tau threshold adjust(using radar reaction factor)

* AGNOS 12.1

* fix lanemode delay/offset -> 0.05

* fix..
2025-05-18 12:44:49 +09:00

531 lines
19 KiB
Python

#!/usr/bin/env python3
import math
import numpy as np
from collections import deque
from typing import Any
import capnp
from cereal import messaging, log, car
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.params import Params
from openpilot.common.realtime import DT_MDL, Priority, config_realtime_process
from openpilot.common.swaglog import cloudlog
from openpilot.common.simple_kalman import KF1D
# Default lead acceleration decay set to 50% at 1s
_LEAD_ACCEL_TAU = 1.5
# radar tracks
SPEED, ACCEL = 0, 1 # Kalman filter states enum
# stationary qualification parameters
V_EGO_STATIONARY = 4. # no stationary object flag below this speed
RADAR_TO_CENTER = 2.7 # (deprecated) RADAR is ~ 2.7m ahead from center of car
RADAR_TO_CAMERA = 1.52 # RADAR is ~ 1.5m ahead from center of mesh frame
class Track:
def __init__(self, identifier: int):
self.identifier = identifier
self.cnt = 0
self.aLeadTau = FirstOrderFilter(_LEAD_ACCEL_TAU, 0.45, DT_MDL)
self.radar_reaction_factor = Params().get_float("RadarReactionFactor") * 0.01
def update(self, d_rel: float, y_rel: float, v_rel: float, v_lead: float, a_lead: float, j_lead: float, measured: float):
self.dRel = d_rel # LONG_DIST
self.yRel = y_rel # -LAT_DIST
self.vRel = v_rel # REL_SPEED
self.vLead = self.vLeadK = v_lead
self.aLead = self.aLeadK = a_lead
self.jLead = j_lead
self.measured = measured # measured or estimate
a_lead_threshold = 0.5 * self.radar_reaction_factor
if abs(self.aLead) < a_lead_threshold and abs(j_lead) < 0.5:
self.aLeadTau.x = _LEAD_ACCEL_TAU * self.radar_reaction_factor
else:
self.aLeadTau.update(0.0)
self.cnt += 1
def get_RadarState(self, md, model_prob: float = 0.0, vision_y_rel = 0.0):
yRel = vision_y_rel if vision_y_rel != 0.0 else float(self.yRel)
dPath = yRel + np.interp(self.dRel, md.position.x, md.position.y)
return {
"dRel": float(self.dRel),
"yRel": float(self.yRel) if vision_y_rel == 0.0 else vision_y_rel,
"dPath" : float(dPath),
"vRel": float(self.vRel),
"vLead": float(self.vLead),
"vLeadK": float(self.vLeadK),
"aLead": float(self.aLead),
"aLeadK": float(self.aLeadK),
"aLeadTau": float(self.aLeadTau.x),
"jLead": float(self.jLead),
"status": True,
"fcw": self.is_potential_fcw(model_prob),
"modelProb": model_prob,
"radar": True,
"radarTrackId": self.identifier,
}
def potential_low_speed_lead(self, v_ego: float):
# stop for stuff in front of you and low speed, even without model confirmation
# Radar points closer than 0.75, are almost always glitches on toyota radars
return abs(self.yRel) < 1.0 and (v_ego < V_EGO_STATIONARY) and (0.75 < self.dRel < 25)
def is_potential_fcw(self, model_prob: float):
return model_prob > .9
def __str__(self):
ret = f"x: {self.dRel:4.1f} y: {self.yRel:4.1f} v: {self.vRel:4.1f} a: {self.aLeadK:4.1f}"
return ret
def laplacian_pdf(x: float, mu: float, b: float):
diff = abs(x - mu) / max(b, 1e-4)
return 0.0 if diff > 50.0 else math.exp(-diff)
def match_vision_to_track(v_ego: float, lead: capnp._DynamicStructReader, tracks: dict[int, Track]):
offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA
vel_tolerance = 25.0 if lead.prob > 0.99 else 10.0
max_offset_vision_dist = max(offset_vision_dist * 0.35, 5.0)
def prob(c):
if abs(c.dRel - offset_vision_dist) > max_offset_vision_dist:
return -1e6
if not ((abs(c.vLead - lead.v[0]) < vel_tolerance) or (c.vLead > 3)):
return -1e6
prob_d = laplacian_pdf(c.dRel, offset_vision_dist, lead.xStd[0])
prob_y = laplacian_pdf(c.yRel, -lead.y[0], lead.yStd[0])
prob_v = laplacian_pdf(c.vLead, lead.v[0], lead.vStd[0])
weight_v = np.interp(c.vLead, [0, 10], [0.3, 1])
return prob_d * prob_y * prob_v * weight_v
track = max(tracks.values(), key=prob, default=None)
return track if track and prob(track) > -1e6 else None
def get_RadarState_from_vision(md, lead_msg: capnp._DynamicStructReader, v_ego: float, model_v_ego: float):
lead_v_rel_pred = lead_msg.v[0] - model_v_ego
dRel = float(lead_msg.x[0] - RADAR_TO_CAMERA)
yRel = float(-lead_msg.y[0])
dPath = yRel + np.interp(dRel, md.position.x, md.position.y)
return {
"dRel": float(dRel),
"yRel": yRel,
"dPath" : float(dPath),
"vRel": float(lead_v_rel_pred),
"vLead": float(v_ego + lead_v_rel_pred),
"vLeadK": float(v_ego + lead_v_rel_pred),
"aLead": float(lead_msg.a[0]),
"aLeadK": float(lead_msg.a[0]),
"aLeadTau": 0.3,
"jLead": 0.0,
"fcw": False,
"modelProb": float(lead_msg.prob),
"status": True,
"radar": False,
"radarTrackId": -1,
}
def get_lead_side(v_ego, tracks, md, lane_width, model_v_ego):
lead_msg = md.leadsV3[0]
leadCenter = {'status': False}
leadLeft = {'status': False}
leadRight = {'status': False}
## SCC레이더는 일단 보관하고 리스트에서 삭제...
track_scc = tracks.get(0)
#if track_scc is not None:
# del tracks[0]
#if len(tracks) == 0:
# return [[],[],[],leadLeft,leadRight]
if md is not None and len(md.position.x) == 33: #ModelConstants.IDX_N:
md_y = md.position.y
md_x = md.position.x
else:
return [[],[],[],leadCenter,leadLeft,leadRight]
leads_center = {}
leads_left = {}
leads_right = {}
next_lane_y = lane_width / 2 + lane_width * 0.8
for c in tracks.values():
# d_y : path_y - traks_y 의 diff값
# yRel값은 왼쪽이 +값, lead.y[0]값은 왼쪽이 -값
d_y = c.yRel + np.interp(c.dRel, md_x, md_y)
if abs(d_y) < lane_width/2:
ld = c.get_RadarState(md, lead_msg.prob, float(-lead_msg.y[0]))
leads_center[c.dRel] = ld
elif -next_lane_y < d_y < 0:
ld = c.get_RadarState(md, 0, 0)
leads_right[c.dRel] = ld
elif 0 < d_y < next_lane_y:
ld = c.get_RadarState(md, 0, 0)
leads_left[c.dRel] = ld
if lead_msg.prob > 0.5:
ld = get_RadarState_from_vision(md, lead_msg, v_ego, model_v_ego)
leads_center[ld['dRel']] = ld
#ll,lr = [[l[k] for k in sorted(list(l.keys()))] for l in [leads_left,leads_right]]
#lc = sorted(leads_center.values(), key=lambda c:c["dRel"])
ll = list(leads_left.values())
lr = list(leads_right.values())
if leads_center:
dRel_min = min(leads_center.keys())
lc = [leads_center[dRel_min]]
else:
lc = {}
leadLeft = min((lead for dRel, lead in leads_left.items() if lead['dRel'] > 5.0), key=lambda x: x['dRel'], default=leadLeft)
leadRight = min((lead for dRel, lead in leads_right.items() if lead['dRel'] > 5.0), key=lambda x: x['dRel'], default=leadRight)
leadCenter = min((lead for dRel, lead in leads_center.items() if lead['vLead'] > 10 / 3.6 and lead['radar']), key=lambda x: x['dRel'], default=leadCenter)
#filtered_leads_left = {dRel: lead for dRel, lead in leads_left.items() if lead['dRel'] > 5.0}
#if filtered_leads_left:
# dRel_min = min(filtered_leads_left.keys())
# leadLeft = filtered_leads_left[dRel_min]
#filtered_leads_right = {dRel: lead for dRel, lead in leads_right.items() if lead['dRel'] > 5.0}
#if filtered_leads_right:
# dRel_min = min(filtered_leads_right.keys())
# leadRight = filtered_leads_right[dRel_min]
return [ll, lc, lr, leadCenter, leadLeft, leadRight]
def get_lead(v_ego: float, ready: bool, tracks: dict[int, Track], lead_msg: capnp._DynamicStructReader,
model_v_ego: float, low_speed_override: bool = True) -> dict[str, Any]:
# Determine leads, this is where the essential logic happens
if len(tracks) > 0 and ready and lead_msg.prob > .5:
track = match_vision_to_track(v_ego, lead_msg, tracks)
else:
track = None
lead_dict = {'status': False}
if track is not None:
lead_dict = track.get_RadarState(lead_msg.prob)
elif (track is None) and ready and (lead_msg.prob > .5):
lead_dict = get_RadarState_from_vision(lead_msg, v_ego, model_v_ego)
if low_speed_override:
low_speed_tracks = [c for c in tracks.values() if c.potential_low_speed_lead(v_ego)]
if len(low_speed_tracks) > 0:
closest_track = min(low_speed_tracks, key=lambda c: c.dRel)
# Only choose new track if it is actually closer than the previous one
if (not lead_dict['status']) or (closest_track.dRel < lead_dict['dRel']):
lead_dict = closest_track.get_RadarState()
return lead_dict
class VisionTrack:
def __init__(self, radar_ts):
self.radar_ts = radar_ts
self.dRel = 0.0
self.vRel = 0.0
self.yRel = 0.0
self.vLead = 0.0
self.aLead = 0.0
self.vLeadK = 0.0
self.aLeadK = 0.0
self.aLeadTau = _LEAD_ACCEL_TAU
self.prob = 0.0
self.status = False
self.dRel_last = 0.0
self.vLead_last = 0.0
self.alpha = 0.02
self.alpha_a = 0.02
self.vLat = 0.0
self.v_ego = 0.0
self.cnt = 0
self.dPath = 0.0
def get_lead(self, md):
#aLeadK = 0.0 if self.mixRadarInfo in [3] else clip(self.aLeadK, self.aLead - 1.0, self.aLead + 1.0)
return {
"dRel": self.dRel,
"yRel": self.yRel,
#"dPath": self.dPath,
"vRel": self.vRel,
"vLead": self.vLead,
"vLeadK": self.vLeadK, ## TODO: 아직 vLeadK는 엉망인듯...
"aLead": self.aLead,
"aLeadK": self.aLeadK,
"aLeadTau": self.aLeadTau,
"jLead": 0.0,
"fcw": False,
"modelProb": self.prob,
"status": self.status,
"radar": False,
"radarTrackId": -1,
#"aLead": self.aLead,
#"vLat": self.vLat,
}
def reset(self):
self.status = False
self.aLeadTau = _LEAD_ACCEL_TAU
self.vRel = 0.0
self.vLead = self.vLeadK = self.v_ego
self.aLead = self.aLeadK = 0.0
self.vLat = 0.0
def update(self, lead_msg, model_v_ego, v_ego, md):
lead_v_rel_pred = lead_msg.v[0] - model_v_ego
self.prob = lead_msg.prob
self.v_ego = v_ego
if self.prob > .8:
dRel = float(lead_msg.x[0]) - RADAR_TO_CAMERA
if abs(self.dRel - dRel) > 5.0:
self.cnt = 0
self.dRel = dRel
self.yRel = float(-lead_msg.y[0])
dPath = self.yRel + np.interp(self.dRel, md.position.x, md.position.y)
a_lead_vision = lead_msg.a[0]
if self.cnt < 2 or self.prob < 0.97:
self.vRel = lead_v_rel_pred
self.vLead = float(v_ego + lead_v_rel_pred)
self.aLead = a_lead_vision
self.vLat = 0.0
else:
v_rel = (self.dRel - self.dRel_last) / self.radar_ts
v_rel = self.vRel * (1. - self.alpha) + v_rel * self.alpha
#self.vRel = lead_v_rel_pred if self.mixRadarInfo == 3 else (lead_v_rel_pred + self.vRel) / 2
model_weight = np.interp(self.prob, [0.97, 1.0], [0.4, 0.0]) # prob가 높으면 v_rel(dRel미분값)에 가중치를 줌.
self.vRel = float(lead_v_rel_pred * model_weight + v_rel * (1. - model_weight))
#self.vRel = (lead_v_rel_pred + v_rel) / 2
self.vLead = float(v_ego + self.vRel)
a_lead = (self.vLead - self.vLead_last) / self.radar_ts * 0.2 #0.5 -> 0.2 vel 미분적용을 줄임.
self.aLead = self.aLead * (1. - self.alpha_a) + a_lead * self.alpha_a
if abs(a_lead_vision) > abs(self.aLead): # or self.mixRadarInfo == 3:
self.aLead = a_lead_vision
vLat_alpha = 0.002
self.vLat = self.vLat * (1. - vLat_alpha) + (dPath - self.dPath) / self.radar_ts * vLat_alpha
self.dPath = dPath
self.vLeadK= self.vLead
self.aLeadK = self.aLead
self.status = True
self.cnt += 1
else:
self.reset()
self.cnt = 0
self.dPath = self.yRel + np.interp(v_ego ** 2 / (2 * 2.5), md.position.x, md.position.y)
self.dRel_last = self.dRel
self.vLead_last = self.vLead
# Learn if constant acceleration
#aLeadTauValue = self.aLeadTauPos if self.aLead > self.aLeadTauThreshold else self.aLeadTauNeg
if abs(self.aLead) < 0.3: #self.aLeadTauThreshold:
self.aLeadTau = 0.2 #aLeadTauValue
else:
#self.aLeadTau = min(self.aLeadTau * 0.9, aLeadTauValue)
self.aLeadTau *= 0.9
class RadarD:
def __init__(self, delay: float = 0.0):
self.current_time = 0.0
self.tracks: dict[int, Track] = {}
self.v_ego = 0.0
print("###RadarD.. : delay = ", delay, int(round(delay / DT_MDL))+1)
self.v_ego_hist = deque([0.0], maxlen=int(round(delay / DT_MDL))+1)
self.last_v_ego_frame = -1
self.radar_state: capnp._DynamicStructBuilder | None = None
self.radar_state_valid = False
self.ready = False
self.vision_tracks = [VisionTrack(DT_MDL), VisionTrack(DT_MDL)]
self.params = Params()
self.enable_radar_tracks = self.params.get_int("EnableRadarTracks")
def update(self, sm: messaging.SubMaster, rr: car.RadarData):
self.ready = sm.seen['modelV2']
self.current_time = 1e-9*max(sm.logMonoTime.values())
self.enable_radar_tracks = self.params.get_int("EnableRadarTracks")
leads_v3 = sm['modelV2'].leadsV3
if sm.recv_frame['carState'] != self.last_v_ego_frame:
self.v_ego = sm['carState'].vEgo
self.v_ego_hist.append(self.v_ego)
self.last_v_ego_frame = sm.recv_frame['carState']
ar_pts = {}
for pt in rr.points:
pt_yRel = pt.yRel
if pt.trackId == 0 and pt.yRel == 0: # scc radar for HKG
if self.ready and leads_v3[0].prob > 0.5:
pt_yRel = -leads_v3[0].y[0]
ar_pts[pt.trackId] = [pt.dRel, pt_yRel, pt.vRel, pt.measured, pt.vLead, pt.aLead, pt.jLead]
# *** remove missing points from meta data ***
for ids in list(self.tracks.keys()):
if ids not in ar_pts:
self.tracks.pop(ids, None)
# *** compute the tracks ***
for ids in ar_pts:
rpt = ar_pts[ids]
# align v_ego by a fixed time to align it with the radar measurement
#v_lead = rpt[2] + self.v_ego_hist[0]
v_lead = rpt[4] # carrot
a_lead = rpt[5]
j_lead = rpt[6]
# create the track if it doesn't exist or it's a new track
if ids not in self.tracks:
self.tracks[ids] = Track(ids)
self.tracks[ids].update(rpt[0], rpt[1], rpt[2], v_lead, a_lead, j_lead, rpt[3])
# *** publish radarState ***
self.radar_state_valid = sm.all_checks()
self.radar_state = log.RadarState.new_message()
model_updated = False if self.radar_state.mdMonoTime == sm.logMonoTime['modelV2'] else True
self.radar_state.mdMonoTime = sm.logMonoTime['modelV2']
self.radar_state.radarErrors = rr.errors
self.radar_state.carStateMonoTime = sm.logMonoTime['carState']
if len(sm['modelV2'].velocity.x):
model_v_ego = sm['modelV2'].velocity.x[0]
else:
model_v_ego = self.v_ego
#leads_v3 = sm['modelV2'].leadsV3
if len(leads_v3) > 1:
if model_updated:
self.vision_tracks[0].update(leads_v3[0], model_v_ego, self.v_ego, sm['modelV2'])
self.vision_tracks[1].update(leads_v3[1], model_v_ego, self.v_ego, sm['modelV2'])
#self.radar_state.leadOne = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[0], model_v_ego, low_speed_override=False)
#self.radar_state.leadTwo = get_lead(self.v_ego, self.ready, self.tracks, leads_v3[1], model_v_ego, low_speed_override=False)
self.radar_state.leadOne = self.get_lead(sm['modelV2'], self.tracks, 0, leads_v3[0], model_v_ego, low_speed_override=False)
self.radar_state.leadTwo = self.get_lead(sm['modelV2'], self.tracks, 1, leads_v3[1], model_v_ego, low_speed_override=False)
# ll, lc, lr, leadCenter, self.radar_state.leadLeft, self.radar_state.leadRight = get_lead_side(self.v_ego, self.tracks, sm['modelV2'],
# sm['lateralPlan'].laneWidth, model_v_ego)
ll, lc, lr, leadCenter, self.radar_state.leadLeft, self.radar_state.leadRight = get_lead_side(self.v_ego, self.tracks, sm['modelV2'], 3.2, model_v_ego)
self.radar_state.leadsLeft = list(ll)
self.radar_state.leadsCenter = list(lc)
self.radar_state.leadsRight = list(lr)
def publish(self, pm: messaging.PubMaster):
assert self.radar_state is not None
radar_msg = messaging.new_message("radarState")
radar_msg.valid = self.radar_state_valid
radar_msg.radarState = self.radar_state
pm.send("radarState", radar_msg)
def get_lead(self, md, tracks: dict[int, Track], index: int, lead_msg: capnp._DynamicStructReader,
model_v_ego: float, low_speed_override: bool = True) -> dict[str, Any]:
v_ego = self.v_ego
ready = self.ready
## SCC레이더는 일단 보관하고 리스트에서 삭제... (SCC Track은 0,1번으로 들어옴)
track_scc = tracks.get(0)
if track_scc is None:
track_scc = tracks.get(1)
#if track_scc is not None:
# del tracks[0] ## tracks에서 삭제하면안됨... ㅠㅠ
# Determine leads, this is where the essential logic happens
if len(tracks) > 0 and ready and lead_msg.prob > .5:
track = match_vision_to_track(v_ego, lead_msg, tracks)
else:
track = None
# vision match후 발견된 track이 없으면
# track_scc 가 있는 지 확인하고
# 비전과의 차이가 35%(5M)이상 차이나면 scc가 발견못한것이기 때문에 비전것으로 처리함.
### 240807, SCC레이더가 옆차선의것을 많이 가져옴... 사용하지 말아야겠다...
# 250415: scc radar정보가 있지만.. vision 미검출시, 오류
if self.enable_radar_tracks in [-1, 2]:
if track_scc is not None and track is None:
track = track_scc
# if self.vision_tracks[index].prob > .5:
# if self.vision_tracks[index].dRel < track.dRel - 10.0: #끼어드는 차량이 있는 경우 처리.. 5-> 10M바꿔보자... 240427
# track = None
lead_dict = {'status': False}
if track is not None:
#lead_dict = track.get_RadarState(md, lead_msg.prob, self.vision_tracks[0].yRel, self.vision_tracks[0].vLat)
lead_dict = track.get_RadarState(md, lead_msg.prob, self.vision_tracks[0].yRel)
elif (track is None) and ready and (lead_msg.prob > .8):
#if self.mixRadarInfo == 4 and v_ego * 3.6 > 30 and lead_msg.prob < 0.99: ##
# pass
#else:
lead_dict = self.vision_tracks[index].get_lead(md)
if low_speed_override:
low_speed_tracks = [c for c in tracks.values() if c.potential_low_speed_lead(v_ego)]
if len(low_speed_tracks) > 0:
closest_track = min(low_speed_tracks, key=lambda c: c.dRel)
# Only choose new track if it is actually closer than the previous one
if (not lead_dict['status']) or (closest_track.dRel < lead_dict['dRel']):
#lead_dict = closest_track.get_RadarState(md, lead_msg.prob, self.vision_tracks[0].yRel, self.vision_tracks[0].vLat)
lead_dict = closest_track.get_RadarState(md, lead_msg.prob, self.vision_tracks[0].yRel)
return lead_dict
# fuses camera and radar data for best lead detection
def main() -> None:
config_realtime_process(5, Priority.CTRL_LOW)
# wait for stats about the car to come in from controls
cloudlog.info("radard is waiting for CarParams")
CP = messaging.log_from_bytes(Params().get("CarParams", block=True), car.CarParams)
cloudlog.info("radard got CarParams")
# *** setup messaging
sm = messaging.SubMaster(['modelV2', 'carState', 'liveTracks'], poll='modelV2')
#sm = messaging.SubMaster(['modelV2', 'carState', 'liveTracks'], poll='liveTracks')
pm = messaging.PubMaster(['radarState'])
RD = RadarD(CP.radarDelay)
while 1:
sm.update()
RD.update(sm, sm['liveTracks'])
RD.publish(pm)
if __name__ == "__main__":
main()