carrot/tinygrad_repo/test/test_tiny.py
2025-04-19 08:05:49 +09:00

119 lines
3.6 KiB
Python

# basic self-contained tests of the external functionality of tinygrad
import unittest, random
from tinygrad import Tensor, Context, Variable, TinyJit, dtypes, Device, nn
from tinygrad.helpers import IMAGE, CI
class TestTiny(unittest.TestCase):
# *** basic functionality ***
def test_plus(self):
out = Tensor([1.,2,3]) + Tensor([4.,5,6])
self.assertListEqual(out.tolist(), [5.0, 7.0, 9.0])
def test_plus_int(self):
out = Tensor([1,2,3], dtype=dtypes.int) + Tensor([4,5,6], dtype=dtypes.int)
self.assertListEqual(out.tolist(), [5, 7, 9])
def test_plus_big(self):
out = Tensor.ones(16).contiguous() + Tensor.ones(16).contiguous()
self.assertListEqual(out.tolist(), [2]*16)
def test_cat(self):
out = Tensor.cat(Tensor.ones(8).contiguous(), Tensor.ones(8).contiguous())
self.assertListEqual(out.tolist(), [1]*16)
def test_sum(self):
out = Tensor.ones(256).contiguous().sum()
self.assertEqual(out.item(), 256)
def test_gemm(self, N=64, out_dtype=dtypes.float):
a = Tensor.ones(N,N).contiguous()
b = Tensor.eye(N).contiguous()
self.assertListEqual((out:=a@b).flatten().tolist(), [1.0]*(N*N))
if IMAGE < 2: self.assertEqual(out.dtype, out_dtype)
# *** randomness ***
def test_random(self):
out = Tensor.rand(10)
for x in out.tolist():
self.assertGreaterEqual(x, 0.0)
self.assertLessEqual(x, 1.0)
# *** JIT (for Python speed) ***
def test_jit(self):
cnt = 0
random.seed(0)
def new_rand_list(ln=10): return [random.randint(0, 100000) for _ in range(ln)]
@TinyJit
def fxn(a,b) -> Tensor:
nonlocal cnt
cnt += 1
return a+b
for _ in range(3):
la,lb = new_rand_list(), new_rand_list()
fa,fb = Tensor(la), Tensor(lb)
ret = fxn(fa, fb)
# math is correct
self.assertListEqual(ret.tolist(), [a+b for a,b in zip(la, lb)])
# function is only called twice
self.assertEqual(cnt, 2)
# *** BEAM (for Kernel speed) ***
def test_beam(self):
with Context(BEAM=1, IGNORE_BEAM_CACHE=1): self.test_plus()
# *** symbolic (to allow less recompilation) ***
def test_symbolic(self):
i = Variable('i', 1, 10)
for s in [2,5]:
ret = Tensor.ones(s).contiguous().reshape(i.bind(s)) + 1
self.assertListEqual(ret.reshape(s).tolist(), [2.0]*s)
def test_symbolic_reduce(self):
i = Variable('i', 1, 10)
for s in [2,5]:
ret = Tensor.ones(s).contiguous().reshape(i.bind(s)).sum()
self.assertEqual(ret.item(), s)
# *** a model ***
# TODO: this is failing because of how swizzling rewrites the ShapeTracker of the final STORE
@unittest.skipIf(IMAGE>0 or (CI and Device.DEFAULT == "DSP"), "failing because of make things that can't be images not images")
def test_mnist_model(self):
layers = [
nn.Conv2d(1, 32, 5), Tensor.relu,
nn.Conv2d(32, 32, 5), Tensor.relu,
nn.BatchNorm(32), Tensor.max_pool2d,
nn.Conv2d(32, 64, 3), Tensor.relu,
nn.Conv2d(64, 64, 3), Tensor.relu,
nn.BatchNorm(64), Tensor.max_pool2d,
lambda x: x.flatten(1), nn.Linear(576, 10)]
# replace random weights with ones
for p in nn.state.get_parameters(layers): p.replace(Tensor.ones_like(p).contiguous()).realize()
# run model inference
probs = Tensor.rand(1, 1, 28, 28).sequential(layers).tolist()
self.assertEqual(len(probs[0]), 10)
# *** image ***
@unittest.skipIf(Device.DEFAULT != "GPU", "image only supported on GPU")
def test_image(self):
with Context(IMAGE=2): self.test_gemm(N=4, out_dtype=dtypes.imagef((4, 1, 4)))
def test_beam_image(self):
with Context(BEAM=1, IGNORE_BEAM_CACHE=1): self.test_image()
if __name__ == '__main__':
unittest.main()