carrot/tinygrad_repo/test/external/external_model_benchmark.py
Vehicle Researcher 4fca6dec8e openpilot v0.9.8 release
date: 2025-01-29T09:09:56
master commit: 227bb68e1891619b360b89809e6822d50d34228f
2025-01-29 09:09:58 +00:00

144 lines
6.9 KiB
Python

import csv, pathlib, time, numpy as np
from os import getenv
import torch
torch.set_num_threads(1)
import onnx
from onnx.helper import tensor_dtype_to_np_dtype
import onnxruntime as ort
from onnx2torch import convert
from extra.onnx import get_run_onnx
from tinygrad.helpers import OSX, DEBUG, fetch
from tinygrad import Tensor, Device
MODELS = {
"resnet50": "https://github.com/onnx/models/raw/main/validated/vision/classification/resnet/model/resnet50-caffe2-v1-9.onnx",
"openpilot": "https://github.com/commaai/openpilot/raw/v0.9.4/selfdrive/modeld/models/supercombo.onnx",
"efficientnet": "https://github.com/onnx/models/raw/main/validated/vision/classification/efficientnet-lite4/model/efficientnet-lite4-11.onnx",
"shufflenet": "https://github.com/onnx/models/raw/main/validated/vision/classification/shufflenet/model/shufflenet-9.onnx",
"commavq": "https://huggingface.co/commaai/commavq-gpt2m/resolve/main/gpt2m.onnx",
"dm": "https://github.com/commaai/openpilot/raw/ba7f840a06dbc8ae3c45b3b4976c88a21895aed0/selfdrive/modeld/models/dmonitoring_model.onnx",
# broken in torch MPS
# "zfnet": "https://github.com/onnx/models/raw/main/archive/vision/classification/zfnet-512/model/zfnet512-9.onnx",
# TypeError: BatchNormalization() got an unexpected keyword argument 'is_test'
# "densenet": "https://github.com/onnx/models/raw/main/archive/vision/classification/densenet-121/model/densenet-3.onnx",
# AssertionError: only onnx version >= 10 supported for slice
# "bert": "https://github.com/onnx/models/raw/main/archive/text/machine_comprehension/bert-squad/model/bertsquad-8.onnx",
# really slow
# "resnet18": "https://github.com/onnx/models/raw/main/archive/vision/classification/resnet/model/resnet18-v2-7.onnx",
}
CSV = {}
open_csv = None
def benchmark(mnm, nm, fxn):
tms = []
for _ in range(3):
st = time.perf_counter_ns()
ret = fxn()
tms.append(time.perf_counter_ns() - st)
print(f"{mnm:15s} {nm:25s} {min(tms)*1e-6:7.2f} ms")
CSV[nm] = min(tms)*1e-6
return min(tms), ret
#BASE = pathlib.Path(__file__).parents[2] / "weights" / "onnx"
BASE = pathlib.Path("/tmp/onnx")
def benchmark_model(m, devices, validate_outs=False):
torch.manual_seed(1)
global open_csv, CSV
CSV = {"model": m}
fn = fetch(MODELS[m])
onnx_model = onnx.load(fn)
output_names = [out.name for out in onnx_model.graph.output]
excluded = {inp.name for inp in onnx_model.graph.initializer}
input_shapes = {inp.name:tuple(x.dim_value if x.dim_value != 0 else 1 for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input if inp.name not in excluded} # noqa: E501
input_types = {inp.name: tensor_dtype_to_np_dtype(inp.type.tensor_type.elem_type) for inp in onnx_model.graph.input if inp.name not in excluded}
#input_types = {k:v if v!=np.float16 else np.float32 for k,v in input_types.items()} # cast
np_inputs = {k:torch.randn(shp).numpy().astype(input_types[k]) for k,shp in input_shapes.items()}
assert len(input_shapes) < 30, f"too many input shapes {len(input_shapes)}"
# print input names
if DEBUG >= 2: print([inp.name for inp in onnx_model.graph.input if inp.name not in excluded])
for device in devices:
try:
Device.DEFAULT = device
inputs = {k:Tensor(inp) for k,inp in np_inputs.items()}
tinygrad_model = get_run_onnx(onnx_model)
benchmark(m, f"tinygrad_{device.lower()}_jitless", lambda: {k:v.numpy() for k,v in tinygrad_model(inputs).items()})
from tinygrad.engine.jit import TinyJit
tinygrad_jitted_model = TinyJit(lambda **kwargs: {k:v.realize() for k,v in tinygrad_model(kwargs).items()})
for _ in range(3): {k:v.numpy() for k,v in tinygrad_jitted_model(**inputs).items()}
benchmark(m, f"tinygrad_{device.lower()}_jit", lambda: {k:v.numpy() for k,v in tinygrad_jitted_model(**inputs).items()}) # noqa: F821
del inputs, tinygrad_model, tinygrad_jitted_model
except RuntimeError as e:
# TODO: we don't run the dm model on METAL for now
if Device.DEFAULT == "METAL":
assert "buffer count limit" in str(e)
return
else: raise e
# convert model to torch
try:
torch_model = convert(onnx_model)
except Exception as e:
# model conversion failed
print(f"{m:16s}onnx2torch {type(e).__name__:>25}")
else:
torch_inputs = [torch.tensor(x) for x in np_inputs.values()]
try: benchmark(m, "torch_cpu", lambda: torch_model(*torch_inputs))
except Exception as e: print(f"{m:16s}torch_cpu {type(e).__name__:>25}")
torch_device = "mps" if OSX else "cuda"
torch_mps_model = torch_model.to(torch_device)
torch_mps_inputs = [x.to(torch_device) for x in torch_inputs]
try: benchmark(m, f"torch_{torch_device}", lambda: torch_mps_model(*torch_mps_inputs))
except Exception as e: print(f"{m:16s}torch_{torch_device} {type(e).__name__:>25}")
# bench onnxruntime
ort_options = ort.SessionOptions()
ort_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
ort_options.log_severity_level = 3 # no warnings
for backend in ["CPU", "CUDA" if not OSX else "CoreML"]: # https://onnxruntime.ai/docs/execution-providers/
provider = backend+"ExecutionProvider"
if provider not in ort.get_available_providers(): continue
ort_sess = ort.InferenceSession(str(fn), ort_options, [provider])
try:
benchmark(m, f"onnxruntime_{backend.lower()}", lambda: ort_sess.run(output_names, np_inputs))
except Exception as e: print(f"{m:16s}onnxruntime_{backend.lower()} {type(e).__name__:>25}")
del ort_sess
if validate_outs:
for device in devices:
rtol, atol = 2e-3, 2e-3 # tolerance for fp16 models
Device.DEFAULT = device
inputs = {k:Tensor(inp) for k,inp in np_inputs.items()}
tinygrad_model = get_run_onnx(onnx_model)
tinygrad_out = tinygrad_model(inputs)
ort_sess = ort.InferenceSession(str(fn), ort_options, ["CPUExecutionProvider"])
onnx_out = ort_sess.run(output_names, np_inputs)
onnx_out = dict([*list(zip(output_names, onnx_out))])
assert_allclose(tinygrad_out, onnx_out, rtol=rtol, atol=atol)
print(f"{m:16s}outputs validated on {device=} with rtol={rtol:.1e}, atol={atol:.1e}")
if open_csv is None:
open_csv = csv.DictWriter(open('onnx_inference_speed.csv', 'w', newline=''), fieldnames=list(CSV.keys()))
open_csv.writeheader()
open_csv.writerow(CSV)
def assert_allclose(tiny_out:dict, onnx_out:dict, rtol=1e-5, atol=1e-5):
assert len(tiny_out) == len(onnx_out) and tiny_out.keys() == onnx_out.keys()
for k in tiny_out.keys():
tiny_v, onnx_v = tiny_out[k], onnx_out[k]
if tiny_v is None: assert tiny_v == onnx_v
else: np.testing.assert_allclose(tiny_v.numpy(), onnx_v, rtol=rtol, atol=atol, err_msg=f"For tensor '{k}' in {tiny_out.keys()}")
if __name__ == "__main__":
devices = [Device.DEFAULT] if getenv("NOCLANG") else [Device.DEFAULT, "CLANG"]
if getenv("MODEL", "") != "": benchmark_model(getenv("MODEL", ""), devices, True)
else:
for m in MODELS: benchmark_model(m, devices, True)