carrot/tinygrad_repo/test/test_winograd.py
carrot 9c7833faf9
KerryGold Model, AGNOS12.4, AdjustLaneChange, EnglighSound (#182)
* Vegetarian Filet o Fish model

* fix.. atc..

* test cluster_speed_limit

* fix.. cluster_speed_limit.. 2

* fix.. clusterspeedlimit3

* cruise speed to roadlimit speed

* fix..

* fix.. eng

* deltaUp/Down for lanechange

* fix.. atc desire...

* fix..

* ff

* ff

* fix..

* fix.. eng

* fix engsound

* Update desire_helper.py

* fix.. connect...

* fix curve_min speed

* Revert "fix curve_min speed"

This reverts commit fcc9c2eb14eb3504abef3e420db93e8882e56f37.

* Reapply "fix curve_min speed"

This reverts commit 2d2bba476c58a7b4e13bac3c3ad0e4694c95515d.

* fix.. auto speed up.. roadlimit

* fix.. atc auto lanechange...

* Update desire_helper.py

* Update cruise.py

* debug atc...

* fix.. waze alert offset..

* fix..

* test atc..

* fix..

* fix.. atc

* atc test..

* fix.. atc

* fix.. atc2

* fix.. atc3

* KerryGold Model.  latsmooth_sec = 0.0

* lat smooth seconds 0.13

* fix comment

* fix.. auto cruise, and speed unit

* change lanemode switching.

* erase mazda lkas button.
2025-06-22 10:51:42 +09:00

98 lines
3.4 KiB
Python

import unittest
import numpy as np
from tinygrad import Tensor, GlobalCounters, dtypes, Context, nn
from tinygrad.uop.ops import Ops
from tinygrad.helpers import Timing, CI, Profiling, WINO, DEBUG, getenv
from tinygrad.codegen.kernel import Kernel
from tinygrad.codegen.heuristic import hand_coded_optimizations
class TestWinogradClose(unittest.TestCase):
def test_close(self):
inp = Tensor.rand(1, 16, 16, 16)
conv = nn.Conv2d(16, 16, 3)
conv(inp).realize() # warmup
GlobalCounters.reset()
print("non winograd")
with Context(WINO=0):
cmp = conv(inp).realize() # warmup
GlobalCounters.reset()
print("winograd")
with Context(WINO=1):
test = conv(inp).realize()
np.testing.assert_allclose(cmp.numpy(), test.numpy(), atol=1e-5)
class TestWinograd(unittest.TestCase):
def setUp(self):
self.old = WINO.value
WINO.value = 1
def tearDown(self):
WINO.value = self.old
def test_speed(self):
x = Tensor.empty(1,4,9,9)
w = Tensor.empty(4,4,3,3)
with Timing("running conv: "):
out = Tensor.conv2d(x, w)
with Timing("scheduling: "):
sched = out.schedule()
for i,s in enumerate(sched):
if s.ast.op is not Ops.SINK: continue
ops = s.ast.toposort()
with Timing(f"linearize {i} with {len(ops):4d} ops: "):
l = Kernel(s.ast)
l.apply_opts(hand_coded_optimizations(l))
l.linearize()
assert len(l.sts) <= 256 # just the current value to prevent regression
if DEBUG >= 2: print(f"{len(l.sts):4d} shapetrackers with max {max(len(x.views) for x in l.sts)} views")
for st in l.sts:
assert len(st.views) <= 2, "too many views in winograd"
if DEBUG >= 3:
print(f"{len(st.views):3d} views")
for v in st.views: print(v)
def test_profile(self):
x,w = Tensor.rand(1,4,9,9).realize(), Tensor.rand(4,4,3,3).realize()
with Profiling(enabled=not CI, sort='time'):
out = Tensor.conv2d(x,w).realize()
out.numpy()
def test_four_kernels(self):
x,w = Tensor.rand(1,4,9,9).realize(), Tensor.rand(4,4,3,3).realize()
GlobalCounters.reset()
out = Tensor.conv2d(x,w).realize()
assert GlobalCounters.kernel_count == 4
out.numpy()
@unittest.skipIf(getenv("PTX"), "winograd uses too much in PTX")
def test_counters(self):
IC, OC, X, Y = 4,4,9,9
#OC, IC, X, Y = 512, 256, 8, 8
x,w = Tensor.rand(1,IC,Y,X).realize(), Tensor.rand(OC,IC,3,3).realize()
GlobalCounters.reset()
Tensor.conv2d(x,w).realize()
ops_wino, mem_wino = GlobalCounters.global_ops, GlobalCounters.global_mem
WINO.value = 0
GlobalCounters.reset()
Tensor.conv2d(x,w).realize()
ops_normal, mem_normal = GlobalCounters.global_ops, GlobalCounters.global_mem
ops_ratio, mem_ratio = ops_wino/ops_normal, mem_wino/mem_normal
print(f"ops: normal {ops_normal:9d} wino {ops_wino:9d} ratio {ops_ratio:.2f}")
print(f"mem: normal {mem_normal:9d} wino {mem_wino:9d} ratio {mem_ratio:.2f}")
self.assertLess(ops_ratio, 2.6) # TODO: there's issues with factorization now
self.assertLess(mem_ratio, 10)
def test_dtype(self):
IC, OC, X, Y = 4,4,9,9
x,w = Tensor.empty(1,IC,Y,X), Tensor.empty(OC,IC,3,3)
self.assertEqual(Tensor.conv2d(x,w).dtype, dtypes.default_float)
x,w = Tensor.empty(1,IC,Y,X,dtype=dtypes.half), Tensor.empty(OC,IC,3,3,dtype=dtypes.half)
self.assertEqual(Tensor.conv2d(x,w).dtype, dtypes.half)
if __name__ == '__main__':
unittest.main(verbosity=2)