carrot/tinygrad_repo/test/test_multitensor.py
carrot 9c7833faf9
KerryGold Model, AGNOS12.4, AdjustLaneChange, EnglighSound (#182)
* Vegetarian Filet o Fish model

* fix.. atc..

* test cluster_speed_limit

* fix.. cluster_speed_limit.. 2

* fix.. clusterspeedlimit3

* cruise speed to roadlimit speed

* fix..

* fix.. eng

* deltaUp/Down for lanechange

* fix.. atc desire...

* fix..

* ff

* ff

* fix..

* fix.. eng

* fix engsound

* Update desire_helper.py

* fix.. connect...

* fix curve_min speed

* Revert "fix curve_min speed"

This reverts commit fcc9c2eb14eb3504abef3e420db93e8882e56f37.

* Reapply "fix curve_min speed"

This reverts commit 2d2bba476c58a7b4e13bac3c3ad0e4694c95515d.

* fix.. auto speed up.. roadlimit

* fix.. atc auto lanechange...

* Update desire_helper.py

* Update cruise.py

* debug atc...

* fix.. waze alert offset..

* fix..

* test atc..

* fix..

* fix.. atc

* atc test..

* fix.. atc

* fix.. atc2

* fix.. atc3

* KerryGold Model.  latsmooth_sec = 0.0

* lat smooth seconds 0.13

* fix comment

* fix.. auto cruise, and speed unit

* change lanemode switching.

* erase mazda lkas button.
2025-06-22 10:51:42 +09:00

1269 lines
50 KiB
Python

import unittest, functools, random, os
from tinygrad import Tensor, Device, nn, GlobalCounters, TinyJit, dtypes, Variable
from tinygrad.device import is_dtype_supported
from tinygrad.uop.ops import Ops, UOp
from tinygrad.helpers import CI, getenv, prod, Context, OSX
from tinygrad.nn.state import get_parameters, get_state_dict
from tinygrad.engine.realize import lower_schedule, BufferCopy, CompiledRunner, run_schedule
import numpy as np
from hypothesis import given, strategies as strat, settings
from test.helpers import REAL_DEV, not_support_multi_device
settings.register_profile("my_profile", max_examples=200, deadline=None, derandomize=getenv("DERANDOMIZE_CI", False))
settings.load_profile("my_profile")
d0 = f"{Device.DEFAULT}:0"
d1 = f"{Device.DEFAULT}:1"
d2 = f"{Device.DEFAULT}:2"
d3 = f"{Device.DEFAULT}:3"
d4 = f"{Device.DEFAULT}:4"
d5 = f"{Device.DEFAULT}:5"
devices_2 = (d1, d2)
devices_3 = (d1, d2, d3)
devices_4 = (d1, d2, d3, d4)
N = 128
# shard_x is "data parallel"
# shard_w is "model parallel"
def _test_allreduce(t:Tensor):
aa = (t[0:64] + t[64:128] + t[128:192] + t[192:256]).repeat([4,1]).realize()
ts = t.shard(devices_4, 0).realize()
b = Tensor(UOp.allreduce(ts.uop, Ops.ADD, ts.device))
b.realize()
return aa, b
@unittest.skipIf(not_support_multi_device(), "no multi")
class TestMultiTensor(unittest.TestCase):
def test_to(self):
X = Tensor.ones(256).contiguous().realize()
X.to_(devices_2)
assert X.shape == (256,)
(X + X).realize()
def test_gradient(self):
X = Tensor.ones(256).contiguous().realize()
X.to_(devices_2)
grad = X.sum().gradient(X)[0]
grad.realize()
def test_shard(self):
X = Tensor.ones(256).contiguous().realize()
X.shard_(devices_2, 0)
for lb in X.uop.src:
assert lb.shape == (128,)
(X + X).realize()
def test_shard_not_multiple(self):
X = Tensor.ones(256).contiguous().realize()
with self.assertRaises(RuntimeError):
X.shard_(devices_3, 0)
def test_tensor_from_multi(self):
X = Tensor([1, 2], dtype=dtypes.int).shard_(devices_2, 0)
Y = Tensor(X.uop)
self.assertEqual(Y.device, Device.DEFAULT)
np.testing.assert_equal(X.numpy(), Y.numpy())
with self.assertRaises(AssertionError):
_ = Tensor(X.uop, dtype=dtypes.float)
def test_sharded_arange(self):
sharded_arange = Tensor.arange(1000).shard(devices_2, 0)
sharded_arange.realize()
np.testing.assert_equal(sharded_arange.numpy(), np.arange(1000))
# TODO: fix this to not copy on the src device
@unittest.expectedFailure
def test_shard_no_recompile(self):
X = Tensor.ones(256).contiguous().realize()
X.shard_(devices_2, 0)
out = (X + X)
sched = out.schedule()
names = []
for si, ei in lower_schedule(sched):
if isinstance(ei.prg, CompiledRunner): names.append(ei.prg.p.name)
ei.run()
self.assertEqual(len(set(names)), 1, "function was relinearized")
@unittest.skip("this doesn't fold because shard_ calls contiguous on all lbs")
def test_sharded_memory(self):
# Buffer may be stuck in track_cross_buffer
for x in (d0, d1, d2, d3, d4): Device[x].synchronize()
mem_base = GlobalCounters.mem_used
X = Tensor.ones(256).contiguous().realize()
assert GlobalCounters.mem_used-mem_base== X.dtype.itemsize * 256, GlobalCounters.mem_used-mem_base
X.shard_(devices_4).realize()
for x in (d0, d1, d2, d3, d4): Device[x].synchronize()
assert GlobalCounters.mem_used-mem_base == X.dtype.itemsize * 256 * 4, GlobalCounters.mem_used-mem_base
X = Tensor.ones(256).contiguous().realize()
assert GlobalCounters.mem_used-mem_base == X.dtype.itemsize * 256, GlobalCounters.mem_used-mem_base
X.shard_(devices_4, axis=0).realize()
for x in (d0, d1, d2, d3, d4): Device[x].synchronize()
assert GlobalCounters.mem_used-mem_base == X.dtype.itemsize * 256, GlobalCounters.mem_used-mem_base
X = Tensor.ones(256).realize()
assert GlobalCounters.mem_used-mem_base == 0
X.shard_(devices_4).realize()
assert GlobalCounters.mem_used-mem_base == 0
X = Tensor.ones(256).realize()
assert GlobalCounters.mem_used-mem_base == 0
X.shard_(devices_4, axis=0).realize()
assert GlobalCounters.mem_used-mem_base == 0
def test_shard_same_device(self):
X = Tensor.ones(256).contiguous().realize()
X.shard_((d1, X.device), 0)
(X + X).realize()
def test_shard_plus_one_sum(self):
X = Tensor.ones(256).contiguous().realize()
X.shard_((d1, d2), 0)
(X + 1).sum().realize()
def test_shard_plus_one_sum_d0(self):
X = Tensor.ones(256).contiguous().realize()
X.shard_((d0, d2), 0)
(X + 1).sum().realize()
def test_numpy(self):
X = Tensor.ones(256)
X.shard_((d1, d2), 0)
np.testing.assert_allclose(X.numpy(), 1)
def _test_simple_add_axis(self, shard_x, shard_w):
X = Tensor.ones(256).contiguous().realize()
W = Tensor.ones(256).contiguous().realize()
X.shard_((d1, d2), shard_x)
W.shard_((d1, d2), shard_w)
O = X + W
np.testing.assert_allclose(O.numpy(), 2)
def test_simple_add(self): return self._test_simple_add_axis(None, None)
def test_simple_add_X(self): return self._test_simple_add_axis(0, None)
def test_simple_add_W(self): return self._test_simple_add_axis(None, 0)
def test_simple_add_XW(self): return self._test_simple_add_axis(0, 0)
def test_four_add(self):
X = Tensor.ones(256, 256).contiguous().realize()
W = Tensor.ones(256, 256).contiguous().realize()
X.shard_(devices_4, 1)
W.shard_(devices_4, None)
O = X + W
np.testing.assert_allclose(O.numpy(), 2)
def test_elementwise_dtype(self):
Tensor.manual_seed(0)
X = Tensor.randn(8, 8).realize()
W = Tensor.randn(8, 8).realize()
X.shard_(devices_4, 0)
W.shard_(devices_4, 0)
O = X.shrink(((0, 2), None)) * W.shrink(((0, 2), None)) < 2
np.testing.assert_allclose(O.numpy(), X.numpy()[0:2]*W.numpy()[0:2] < 2)
def test_shrink_on_shard_axis(self):
X = Tensor.arange(4*4).reshape(4,4).realize()
X_np = X.numpy()
X.shard_(devices_2, 0)
# only shrink on the device that owns the shard, this is enabled by the mselect simplifier
for i in range(2):
xt = X[i*2:i*2+2].contiguous()
sched = xt.schedule()
#kernels = [s for s in sched if s.ast.op is Ops.SINK]
#self.assertEqual(len(kernels), 1)
#self.assertEqual(kernels[0].bufs[0].device, devices_2[i])
run_schedule(sched)
np.testing.assert_equal(xt.numpy(), X_np[i*2:i*2+2])
@given(strat.sampled_from((4, 5)), strat.sampled_from((devices_2, devices_3)),
strat.sampled_from((Ops.ADD, Ops.MUL, Ops.MAX)),
strat.sampled_from((None, 0, 1)), strat.sampled_from((None, 0, 1)), strat.sampled_from((1, 0, -1)))
def test_simple_reduce(self, N, devices, rop, shard_axis, reduce_axis, sign):
N = N * len(devices)
X = Tensor.rand(N*N).reshape(N, N).mul(sign)
n = X.numpy()
X.shard_(devices, shard_axis)
f = {Ops.ADD: lambda x: x.sum(reduce_axis), Ops.MUL: lambda x: x.prod(reduce_axis),
Ops.MAX: lambda x: x.max(reduce_axis)}[rop]
fX = f(X)
fn = f(n)
np.testing.assert_allclose(fX.numpy(), fn, rtol=1e-6, atol=1e-6)
def test_allreduce_naive(self):
with Context(RING=0):
a,b = _test_allreduce(Tensor.rand(256, 256))
np.testing.assert_almost_equal(a.numpy(), b.numpy(), decimal=5)
def test_allreduce_ring(self):
with Context(RING=2):
a,b = _test_allreduce(Tensor.rand(256, 256))
np.testing.assert_almost_equal(a.numpy(), b.numpy(), decimal=5)
def test_copy_jit(self):
@TinyJit
def copy_tensor(x:Tensor): return (x.to(f"{x.device.split(':')[0]}:1") + 1)
for _ in range(5):
t = Tensor.rand(256).realize()
x = copy_tensor(t)
np.testing.assert_equal((t+1).numpy(), x.numpy())
def test_allreduce_naive_jit(self):
with Context(RING=0):
jit_allreduce = TinyJit(_test_allreduce)
for _ in range(5):
a,b = jit_allreduce(Tensor.rand(256, 256))
np.testing.assert_almost_equal(a.numpy(), b.numpy(), decimal=5)
def test_allreduce_ring_jit(self):
with Context(RING=2):
jit_allreduce = TinyJit(_test_allreduce)
for _ in range(5):
a,b = jit_allreduce(Tensor.rand(256, 256))
np.testing.assert_almost_equal(a.numpy(), b.numpy(), decimal=5)
def test_multitensor_jit_input(self):
@TinyJit
def f(x): return (x+1).contiguous().sum()
for _ in range(5):
tt = Tensor.arange(0, 4).contiguous().realize().shard((d1,d2), 0).realize()
out = f(tt)
assert out.item() == 1+2+3+4
def test_multitensor_inside_jit(self):
@TinyJit
def f(x): return (x.shard((d1,d2), 0)+1).contiguous().sum()
for _ in range(5):
tt = Tensor.arange(0, 4).contiguous().realize()
out = f(tt)
assert out.item() == 1+2+3+4
def test_fuzz_allreduce(self):
random.seed(41)
for it in range(2):
for n in range(2, 4+1):
shape = tuple([(n if i == 0 else 1) * random.randint(1, 10) for i in range(random.randint(1, 4))])
t = Tensor.rand(shape).shard_(tuple([d0, d1, d2, d3][:n]), 0)
with Context(RING=0):
a = Tensor(UOp.allreduce(t.uop, Ops.ADD, t.device))
with Context(RING=2):
b = Tensor(UOp.allreduce(t.uop, Ops.ADD, t.device))
diff = a - b
mean_err = diff.reshape((prod(diff.shape),)).abs().mean().numpy()
max_err = diff.reshape((prod(diff.shape),)).abs().max().numpy()
assert mean_err < 1e-6, f"big mean error, iteration {it}_{n}"
assert max_err < 1e-6, f"big max error, iteration {it}_{n}"
def _test_matmul_shard_axis(self, shard_x, shard_w, device):
X = Tensor.kaiming_uniform(N, N).realize()
W = Tensor.kaiming_uniform(N, N).realize()
Xs = X.shard(device, shard_x)
Ws = W.shard(device, shard_w)
O = (Xs@Ws)
np.testing.assert_allclose(X.numpy() @ W.numpy(), O.to(Device.DEFAULT).numpy(), atol=1e-5)
def _test_double_matmul_shard_axis(self, shard_x, shard_w, device):
X = Tensor.kaiming_uniform(N, N).realize()
W1 = Tensor.kaiming_uniform(N, N).realize()
W2 = Tensor.kaiming_uniform(N, N).realize()
Xs = X.shard(device, shard_x)
W1s = W1.shard(device, shard_w)
W2s = W2.shard(device, shard_w)
O = (Xs@W1s)@W2s
np.testing.assert_allclose((X.numpy() @ W1.numpy()) @ W2.numpy(), O.to(Device.DEFAULT).numpy(), atol=1e-5)
def test_matmul_shard_none(self): return self._test_matmul_shard_axis(None, None, devices_2)
def test_matmul_shard_X_0(self): return self._test_matmul_shard_axis(0, None, devices_2)
def test_matmul_shard_X_1(self): return self._test_matmul_shard_axis(1, None, devices_2)
def test_matmul_shard_W_0(self): return self._test_matmul_shard_axis(None, 0, devices_2)
def test_matmul_shard_W_1(self): return self._test_matmul_shard_axis(None, 1, devices_2)
def test_matmul_shard_0_0(self): return self._test_matmul_shard_axis(0, 0, devices_2)
def test_matmul_shard_0_1(self): return self._test_matmul_shard_axis(0, 1, devices_2)
def test_matmul_shard_1_0(self): return self._test_matmul_shard_axis(1, 0, devices_2)
def test_matmul_shard_1_1(self): return self._test_matmul_shard_axis(1, 1, devices_2)
def test_double_matmul_shard_X_0(self): return self._test_double_matmul_shard_axis(0, None, devices_2)
def test_double_matmul_shard_X_1(self): return self._test_double_matmul_shard_axis(1, None, devices_2)
def test_double_matmul_shard_W_0(self): return self._test_double_matmul_shard_axis(None, 0, devices_2)
def test_double_matmul_shard_W_1(self): return self._test_double_matmul_shard_axis(None, 1, devices_2)
def test_conv_data_shard(self):
conv = nn.Conv2d(3, 16, 3, bias=False)
for p in get_parameters(conv): p.shard_(devices_2)
fake_image = Tensor.rand((2, 3, 32, 32)).shard(devices_2, axis=0)
out = conv(fake_image)
out.numpy()
def test_conv_bias_data_shard(self):
conv = nn.Conv2d(3, 16, 3)
for p in get_parameters(conv): p.shard_(devices_2)
fake_image = Tensor.rand((2, 3, 32, 32)).shard(devices_2, axis=0)
out = conv(fake_image)
out.numpy()
def test_backprop_conv(self):
with Tensor.train():
conv = nn.Conv2d(3, 16, 3)
for p in get_parameters(conv): p.shard_(devices_2)
optim = nn.optim.Adam(get_parameters(conv))
fake_image = Tensor.rand((2, 3, 32, 32)).shard(devices_2, axis=0)
out = conv(fake_image)
optim.zero_grad()
out.mean().backward()
#for p in get_parameters(conv): p.grad.realize()
optim.step()
out.numpy()
def test_backprop_conv_wino(self):
with Context(WINO=1): self.test_backprop_conv()
def test_backward_sum(self):
x = Tensor([[1.,2,3,4], [5,6,7,8]]).shard(devices_2, axis=0)
w = Tensor([1.,2,3,4], requires_grad=True).shard(devices_2)
out = x * w
out.mean().backward()
tst = w.grad.numpy()
np.testing.assert_allclose(tst, [0.75, 1., 1.25, 1.5])
def test_lr_scheduler_OneCycleLR(self):
from extra.lr_scheduler import OneCycleLR
conv = nn.Conv2d(3, 16, 3)
for p in get_parameters(conv): p.shard_(devices_2)
optim = nn.optim.SGD(get_parameters(conv))
lr_sched = OneCycleLR(optim, max_lr=0.1, pct_start=0.1, div_factor=100, final_div_factor=0.1, total_steps=10)
lr_sched.step()
def test_embedding(self):
B, T, embed_size, vocab_size = 4, 10, 20, 28
layer = nn.Embedding(vocab_size, embed_size)
x = Tensor(np.random.randint(0, vocab_size, (B, T), dtype=np.int32))
z = layer(x)
layer_sharded = nn.Embedding(vocab_size, embed_size)
layer_sharded.weight.replace(layer.weight.shard(devices_2, axis=1)).realize()
x_sharded = x.shard(devices_2, axis=None)
z_shard = layer_sharded(x_sharded)
np.testing.assert_allclose(z.numpy(), z_shard.numpy(), atol=1e-6, rtol=1e-6)
def test_rmsnorm(self):
B, T, embed_size = 4, 10, 20
norm = nn.RMSNorm(embed_size)
x = Tensor.rand((B, T, embed_size)).contiguous().realize()
y = norm(x)
# for norm layers, the correct way to shard weights is duplication
norm_sharded = nn.RMSNorm(embed_size)
norm_sharded.weight.shard_(devices_2, axis=None).realize()
# if x is being sharded, then all-reduce is involved
x_sharded = x.shard(devices_2, axis=2).realize()
y_shard = norm_sharded(x_sharded).realize()
np.testing.assert_allclose(y.numpy(), y_shard.numpy(), atol=1e-6, rtol=1e-6)
# if x is being duplicated, then the operations remain inside each GPU
# which is the common case
x_sharded = x.shard(devices_2, axis=None).realize()
y_shard = norm_sharded(x_sharded).realize()
np.testing.assert_allclose(y.numpy(), y_shard.numpy(), atol=1e-6, rtol=1e-6)
# NOTE: this is failing on LLVM CI, no idea why. Works locally.
@unittest.skipIf(CI and REAL_DEV in ("CUDA", "NV", "LLVM", "CPU"), "slow, and flaky on LLVM/CPU")
@unittest.skipIf(REAL_DEV == "WEBGPU" and not OSX, "WEBGPU Vulkan can only run kernels with up to 10 buffers")
def test_data_parallel_resnet(self):
from extra.models.resnet import ResNet18
fake_image = Tensor.rand((2, 3, 224//8, 224//8))
fake_image_sharded = fake_image.shard(devices_2, axis=0)
m = ResNet18()
m.load_from_pretrained()
real_output = m(fake_image).log_softmax().numpy()
for p in get_parameters(m): p.shard_(devices_2).realize()
GlobalCounters.reset()
shard_output = m(fake_image_sharded).log_softmax().realize()
shard_output_np = shard_output.numpy()
np.testing.assert_allclose(real_output, shard_output_np, atol=1e-6, rtol=1e-6)
def _test_model_train_step(self, m, fake_image, labels):
from tinygrad.nn.optim import LARS
optimizer = LARS(get_parameters(m), 0.1) # set requires_grad for all params
optimizer.zero_grad()
m.load_from_pretrained()
output = m(fake_image).sparse_categorical_crossentropy(labels, label_smoothing=0.1)
output.backward()
grad = m.conv1.weight.grad.numpy()
fake_image_sharded = fake_image.shard(devices_2, axis=0)
labels_sharded = labels.shard(devices_2, axis=0)
for p in get_parameters(m): p.shard_(devices_2).realize()
GlobalCounters.reset()
optimizer.zero_grad()
shard_output = m(fake_image_sharded).sparse_categorical_crossentropy(labels_sharded, label_smoothing=0.1)
shard_output.backward()
shard_grad = m.conv1.weight.grad.numpy()
# sometimes there is zeros in these grads... why?
np.testing.assert_allclose(grad, shard_grad, atol=1e-5, rtol=1e-5)
@unittest.skipIf(CI and REAL_DEV in ("CUDA", "NV", "LLVM", "CPU"), "slow, and flaky on LLVM/CPU")
@unittest.skipIf(REAL_DEV == "WEBGPU" and not OSX, "WEBGPU Vulkan can only run kernels with up to 10 buffers")
def test_data_parallel_resnet_train_step(self):
from extra.models.resnet import ResNet18
fake_image = Tensor.rand((2, 3, 224//8, 224//8))
labels = Tensor.randint(2, low=0, high=1000)
m = ResNet18()
self._test_model_train_step(m, fake_image, labels)
def test_data_parallel_simple_train_step(self):
class Model:
def __init__(self): self.conv1 = nn.Linear(128,128)
def __call__(self, x): return self.conv1(x)
def load_from_pretrained(self): pass
fake_image = Tensor.rand((128,))
labels = Tensor.randint(2, low=0, high=127)
m = Model()
self._test_model_train_step(m, fake_image, labels)
def test_assign_kv_cache_multi(self):
bsz, max_context = 2, 8
class Attn:
@TinyJit
def __call__(self, xk:Tensor, start_pos:UOp):
seqlen = xk.shape[1]
if not hasattr(self, "cache_k"):
self.cache_k = Tensor.zeros(bsz, max_context, 1, 1).shard(devices_2).contiguous().realize()
keys = self.cache_k.shrink((None, (0, start_pos), None, None)).cat(xk, dim=1).contiguous() if start_pos > 0 else xk
self.cache_k.assign(keys.pad((None,(0,max_context-start_pos-seqlen),None,None)).contiguous()).realize()
attn = Attn()
xk = Tensor.ones(bsz, 3, 1, 1).shard(devices_2).contiguous()
attn(xk, 0)
for i in range(3,6):
# copied from LLaMA
start_pos = Variable("start_pos", 1, max_context).bind(i)
xk = Tensor.ones(bsz, 1, 1, 1).shard(devices_2).contiguous()
attn(xk, start_pos)
out = attn.cache_k.flatten().numpy()
np.testing.assert_allclose(out, [1.,1.,1.,1.,1.,1.,0.,0.,1.,1.,1.,1.,1.,1.,0.,0.])
def test_multi_tensor_jit_param(self):
@TinyJit
def jf(a, b) -> Tensor:
return (a + b).realize()
for _ in range(5):
a = Tensor.ones(256).contiguous().realize()
b = Tensor.ones(256).contiguous().realize()
a.shard_(devices_2)
b.shard_(devices_2)
c = jf(a, b)
np.testing.assert_allclose(c.numpy(), a.numpy()+b.numpy(), atol=1e-4, rtol=1e-5)
assert len(jf.jit_cache) > 0
def test_multi_tensor_jit_body(self):
@TinyJit
def jf() -> Tensor:
a = Tensor.ones(256).contiguous().realize()
b = Tensor.ones(256).contiguous().realize()
a.shard_(devices_2)
b.shard_(devices_2)
return (a + b).realize()
for _ in range(5):
r = jf()
np.testing.assert_allclose(r.numpy(), np.ones(256)+np.ones(256), atol=1e-4, rtol=1e-5)
assert len(jf.jit_cache) > 0
@unittest.skip("test broken")
def test_multi_device_jit_graph(self):
if Device[d0].graph is None or Device[d1].graph is None: raise unittest.SkipTest("only test graphs")
@TinyJit
def jf(a: Tensor, b: Tensor, c: Tensor, d:Tensor):
# Create 80 entries on device 0: 2 batches.
for _ in range(40):
a = ((a + b).realize() + (a * b).realize()).realize()
# Create 80 entries on device 1: 2 batches.
for _ in range(40):
c = ((c + d).realize() + (c * d).realize()).realize()
# Create a copy from device 0 to 1: 1 entry.
a = a.to(d1).realize()
# Creates one last entry on device 1: 1 batch.
return (a + c).realize()
a = Tensor.randn(10, 10, device=d0).realize()
b = Tensor.randn(10, 10, device=d0).realize()
c = Tensor.randn(10, 10, device=d1).realize()
d = Tensor.randn(10, 10, device=d1).realize()
ref = jf(a, b, c, d).numpy()
for _ in range(5):
o = jf(a, b, c, d).numpy()
np.testing.assert_allclose(ref, o, atol=1e-4, rtol=1e-5)
graph_d0 = Device[d0].graph.func if isinstance(Device[d0].graph, functools.partial) else Device[d0].graph
graph_d1 = Device[d1].graph.func if isinstance(Device[d1].graph, functools.partial) else Device[d1].graph
# Checking that 2 graphs per device, 1 copy and 1 last graph on device 1 are created.
assert isinstance(jf.jit_cache[0].prg, graph_d0)
assert isinstance(jf.jit_cache[1].prg, graph_d0)
assert isinstance(jf.jit_cache[2].prg, graph_d1)
assert isinstance(jf.jit_cache[3].prg, graph_d1)
assert isinstance(jf.jit_cache[4].prg, BufferCopy)
assert isinstance(jf.jit_cache[5].prg, graph_d1)
@unittest.skip("no longer supports uneven shard")
def test_uneven_shard(self):
for N in range(1, 6):
X = Tensor.rand(4, 1, 257).contiguous().realize()
n = X.numpy()
devices = tuple(f"{Device.DEFAULT}:{i}" for i in range(N))
X.shard_(devices, 2)
np.testing.assert_equal(X.numpy(), n)
np.testing.assert_equal(X.reshape(2, 2, 257).numpy(), n.reshape((2, 2, 257)))
np.testing.assert_equal(X.shrink(((0,2), (0, 1), (0,257))).numpy(), n[0:2, 0:1, 0:257])
np.testing.assert_equal(X.expand((4, 4, 257)).numpy(), np.tile(n, (1, 4, 1)))
np.testing.assert_equal(X.permute((0, 2, 1)).numpy(), np.transpose(n, (0, 2, 1)))
@unittest.skip("no longer supports uneven shard")
def test_uneven_multiple_zeros(self):
for data in ([1, 2, 3, 4], [1, 2, 3], [1, 2], [1], []):
for N in (1, 2, 3, 4):
devices = tuple(f"{Device.DEFAULT}:{i}" for i in range(N))
# make sure something is computed on each device
X = ((Tensor(data).shard(devices, axis=0) + 1).realize() - 1).realize()
np.testing.assert_equal(X.numpy(), data)
@unittest.skip("no longer supports uneven shard")
def test_uneven_shard_with_empty(self):
N = 4
X = Tensor.rand(16, 1, 3).contiguous().realize()
np_x = X.numpy()
devices = tuple(f"{Device.DEFAULT}:{i}" for i in range(N))
# test empty shard
np.testing.assert_equal(X.shard(devices, 0).numpy(), np_x)
# test reshape with empty shard
np.testing.assert_equal(X.shard(devices, 0).reshape(8, 1, 6).numpy(), np_x.reshape(8, 1, 6))
@unittest.skip("no longer supports uneven shard")
def test_multiple_uneven_shard(self):
N = 4
X = Tensor.rand(4, 1, 257).contiguous().realize()
Y = Tensor.rand(4, 1, 257).contiguous().realize()
np_x, np_y = X.numpy(), Y.numpy()
devices = tuple(f"{Device.DEFAULT}:{i}" for i in range(N))
X.shard_(devices, 2)
Y.shard_(devices, 2)
np.testing.assert_equal(X.numpy(), np_x)
np.testing.assert_equal(Y.numpy(), np_y)
np.testing.assert_equal((X + Y).numpy(), np_x + np_y)
def test_bn_ast_on_devices(self):
t = Tensor.empty((16, 64, 112, 112)).shard(devices_4, axis=0)
bn = nn.BatchNorm2d(64)
for p in get_parameters(bn): p.shard_(devices_4).realize()
out = bn(t)
scheds = [sched for sched in out.schedule() if sched.bufs[0].device in devices_4 and sched.ast.op is not Ops.COPY]
assert set(sched.bufs[0].device for sched in scheds) == set(devices_4), "should have ast on each shard device"
asts = [sched.ast for sched in scheds]
self.assertEqual(len(asts), 4)
# ast are the same on devices
self.assertEqual(len(set(asts)), 1)
def test_reshape_on_axis(self):
t0 = Tensor.rand((26, 15, 7)).shard(devices_3, axis=1)
# test split and rejoin to the right
t1 = t0.reshape((26, 3, 5, 7))
t2 = t0.reshape((26, 3, 35))
t3 = t1.reshape((26, 15, 7))
t4 = t2.reshape((26, 105,))
for t in [t0, t1, t2, t3, t4]:
assert t.uop.axis == 1
np.testing.assert_allclose(t.numpy().flatten(), t0.numpy().flatten())
# test shape-one axis
t5 = t4.reshape((26, 1, 105))
assert t5.uop.axis == 2
np.testing.assert_allclose(t.numpy().flatten(), t5.numpy().flatten())
# test split and rejoin to the right and reshape to the left
t5 = t0.reshape((2, 13, 3, 5, 7))
t6 = t0.reshape((13, 2, 3, 7, 5))
t7 = t0.reshape((1, 13, 2, 3, 1, 7, 5))
assert t5.uop.axis == 2
assert t6.uop.axis == 2
assert t7.uop.axis == 3
np.testing.assert_allclose(t5.numpy().flatten(), t0.numpy().flatten())
np.testing.assert_allclose(t6.numpy().flatten(), t0.numpy().flatten())
np.testing.assert_allclose(t7.numpy().flatten(), t0.numpy().flatten())
# test no left join
with self.assertRaises((AssertionError, ValueError)):
t0.reshape((26*15,7)).schedule()
@unittest.skip("no longer supports uneven shard")
def test_reshape_on_axis_uneven(self):
def reshape_helper(t0, t, t_axis):
assert t.uop.axis == t_axis
np.testing.assert_allclose(t0.reshape(t.shape).numpy(), t.numpy())
t0 = Tensor.rand((4, 42, 15)).shard(devices_3, axis=1, splits=[14, 7, 21])
# ok to reshape as long as elements remain on same device
reshape_helper(t0, t0.reshape(2, 2, 42, 3, 5), 2)
# split to the right
reshape_helper(t0, t0.reshape(2, 2, 6, 7, 15), 2)
# split off and merge to the right
reshape_helper(t0, t0.reshape(4, 6, 105), 1)
# really blend the axes together
reshape_helper(t0, t0.reshape(4, 30, 21), 1)
# split off 1-shape
reshape_helper(t0, t0.reshape(4, 1, 42, 15), 2)
reshape_helper(t0, t0.reshape(4, 6, 1, 7, 15), 1)
# assert if cannot maintain shard axis without moving items between devices
with self.assertRaises(AssertionError): t0.reshape(4, 7, 6, 15)
# assert for degenerate reshape
with self.assertRaises(AssertionError): t0.reshape(4, 5, 7, 15)
# assert for cannot maintain axis
with self.assertRaises(AssertionError): t0.reshape(4, 3, 2, 7, 15)
# it doesn't work like this anymore
# NOTE: this never failed in assign_multi, it failed tensor spec because MULTI was never pushed in the graph
@unittest.expectedFailure
def test_mlb_assign_change_axis(self):
t_none = Tensor.zeros((16, 16)).shard(devices_2).contiguous().realize()
t_zero = Tensor.ones((16, 16)).shard(devices_2, axis=0)
with self.assertRaises(RuntimeError):
# don't allow assigns that change axes
t_none.assign(t_zero)
t_none.schedule()
def test_init_rand_with_multiple_devices_fail(self):
# init rand with multi device is not allowed
with self.assertRaises(ValueError):
Tensor.rand(256, device=devices_2)
def test_rand_on_multiple_devices(self):
# different devices generate different rand
d0_rand = Tensor.rand(256, device=d0).realize()
d1_rand = Tensor.rand(256, device=d1).realize()
assert not np.allclose(d0_rand.numpy(), d1_rand.numpy())
def test_rand_on_multiple_devices_manual_seed(self):
Tensor.manual_seed(123)
d0_rand = Tensor.rand(2, device=d0).tolist()
d1_rand = Tensor.rand(2, device=d1).tolist()
# manual_seed again gives the same values
Tensor.manual_seed(123)
d0_rand2 = Tensor.rand(2, device=d0).tolist()
d1_rand2 = Tensor.rand(2, device=d1).tolist()
self.assertEqual(d0_rand, d0_rand2)
self.assertEqual(d1_rand, d1_rand2)
# device seed is only determined by init order, so flipping init order flips rands
Tensor.manual_seed(123)
d1_rand_flip = Tensor.rand(2, device=d1).tolist()
d0_rand_flip = Tensor.rand(2, device=d0).tolist()
self.assertEqual(d0_rand, d1_rand_flip)
self.assertEqual(d1_rand, d0_rand_flip)
def test_rand_like_on_shard(self):
t = Tensor.empty((16, 16)).shard(devices_2)
t2 = Tensor.rand_like(t)
self.assertEqual(t.shape, t2.shape)
self.assertEqual(t.device, t2.device)
self.assertEqual(t.dtype, t2.dtype)
self.assertEqual(t.uop.axis, t2.uop.axis)
def test_rand_like_from_alu(self):
a = Tensor.ones(4, 4).shard(devices_4, axis=0)
aa = a + a
self.assertEqual(aa.device, devices_4)
self.assertEqual(aa.uop.axis, 0)
raa = aa.rand_like()
self.assertEqual(raa.device, devices_4)
self.assertEqual(raa.uop.axis, 0)
b = Tensor.empty(4, 4).shard(devices_4, axis=None)
ab = a + b
self.assertEqual(ab.device, devices_4)
self.assertEqual(ab.uop.axis, 0)
rab = ab.rand_like()
self.assertEqual(rab.device, devices_4)
self.assertEqual(rab.uop.axis, 0)
@unittest.skip("no longer supports uneven shard")
def test_rand_like_uneven_shard(self):
t = Tensor.empty((4, 42, 15)).shard(devices_3, axis=1)
t2 = Tensor.rand_like(t)
self.assertEqual(t.shape, t2.shape)
self.assertEqual(t.device, t2.device)
self.assertEqual(t.dtype, t2.dtype)
self.assertEqual(t.uop.axis, t2.uop.axis)
assert all(tlb.shape == t2lb.shape for tlb, t2lb in zip(t.uop.src, t2.uop.src))
def test_rand_like_none_shard(self):
t = Tensor.empty((16, 16)).shard(devices_2)
t2 = Tensor.rand_like(t)
self.assertEqual(t.shape, t2.shape)
self.assertEqual(t.device, t2.device)
self.assertEqual(t.dtype, t2.dtype)
self.assertEqual(t.uop.axis, t2.uop.axis)
def test_rand_like_arg_dtype(self):
t = Tensor.empty((16, 16), dtype=dtypes.int32).shard(devices_2, axis=1)
t2 = Tensor.rand_like(t, dtype=dtypes.float32)
self.assertEqual(t.dtype, dtypes.int32)
self.assertEqual(t2.dtype, dtypes.float32)
def test_rand_like_arg_device(self):
# axis=None
t = Tensor.empty((16, 16)).shard((d1, d2), axis=None)
with self.assertRaises(RuntimeError):
Tensor.rand_like(t, device=(d3, d4))
# axis=1
t = Tensor.empty((16, 16)).shard((d1, d2), axis=1)
with self.assertRaises(RuntimeError):
Tensor.rand_like(t, device=(d3, d4))
def test_dropout_on_shard(self):
with Tensor.train():
X = Tensor.ones(256).to(devices_2)
output = X.dropout(0.5).numpy()
unique, counts = np.unique(output, return_counts=True)
assert set(unique) == {0, 2}, unique
assert 100 < counts[0] < 156, counts[0]
def test_dropout_on_shard_axis(self):
with Tensor.train():
X = Tensor.ones(512).shard(devices_2, axis=0)
output = X.dropout(0.5).numpy()
unique, counts = np.unique(output, return_counts=True)
assert set(unique) == {0, 2}, unique
assert 200 < counts[0] < 312, counts[0]
@unittest.skip("no longer supports uneven shard")
def test_dropout_on_uneven_shard_axis(self):
with Tensor.train():
X = Tensor.ones(256).shard(devices_3, axis=0)
output = X.dropout(0.5).numpy()
unique, counts = np.unique(output, return_counts=True)
assert set(unique) == {0, 2}, unique
assert 100 < counts[0] < 156, counts[0]
@unittest.skip("TODO: this requires forced_realize to be deleted.")
def test_shard_memory(self):
devices = (d0, d1, d2, d3)
t = Tensor.zeros(16, 16).contiguous()
t.shard_(devices, axis=0).realize()
assert all([lb is lb.base and lb.realized.base.size == 4 * 16 for lb in t.uop.src])
@unittest.skip("this is unreliable on OSX")
def test_clone(self):
t = Tensor.rand(16, 16).shard(devices_2, axis=None)
np.testing.assert_allclose(t.numpy(), t.clone().numpy())
t = Tensor.rand(16, 16).shard(devices_2, axis=0)
np.testing.assert_allclose(t.numpy(), t.clone().numpy())
def test_multi_const_folding(self):
with Context(TRACK_MATCH_STATS=0):
a = Tensor.arange(3).realize()
zeros = Tensor.zeros(3).realize()
b = a.to(devices_2)*zeros.to(devices_2)
sched = b.schedule()
self.assertEqual(len(sched), 0)
self.assertListEqual(b.tolist(), [0, 0, 0])
@unittest.skipIf(not_support_multi_device(), "no multi")
class TestHandleData(unittest.TestCase):
def test_copied_to_device(self):
device = (d0, d1, d2, d3)
t = Tensor([1, 2, 3, 4]).shard(device).realize()
not_covered = t.to(d5)
sched = not_covered.schedule()
assert len(sched) == 1
# setup again because create_schedule has side effect
t = Tensor([1, 2, 3, 4]).shard(device).realize()
not_covered = t.to(d5)
assert not_covered.realize().tolist() == [1, 2, 3, 4]
for d in device:
t = Tensor([1, 2, 3, 4]).shard(device).realize()
covered = t.to(d)
sched = covered.schedule()
# TODO: this isn't optimized out anymore
#assert len(sched) == 0
# setup again because create_schedule has side effect
t = Tensor([1, 2, 3, 4]).shard(device).realize()
covered = t.to(d)
assert covered.realize().tolist() == [1, 2, 3, 4]
@unittest.skipIf(not_support_multi_device(), "no multi")
class TestShrinkMultiTensorShardedAxis(unittest.TestCase):
# shrink a multitensor on sharded axis
def test_shrink_bad_args(self):
t = Tensor.arange(64).reshape(8, 8).contiguous().realize()
t.shard_([f"{Device.DEFAULT}:{i}" for i in range(4)], axis=0)
with self.assertRaises(AssertionError):
# sharded axis shrink on non-device boundry is not allowed
a = t.shrink(((0, 3), (0, 8)))
a.schedule()
with self.assertRaises(AssertionError):
# cannot shrink sharded and non-sharded axis at the same time
a = t.shrink(((0, 2), (2, 4)))
a.schedule()
a = t.shrink(((0, 2), (0, 8)))
a.schedule()
assert a.shape == (2, 8)
p = a.pad(((0, 6), (0, 0)))
p.schedule()
assert p.shape == (8, 8)
@given(strat.sampled_from([dtypes.float, dtypes.int, dtypes.int64, dtypes.int16]))
def test_ops(self, dtype):
if not is_dtype_supported(dtype): return
t = Tensor.arange(64).reshape(8, 8).contiguous().realize()
t.shard_([f"{Device.DEFAULT}:{i}" for i in range(4)], axis=0)
for i in range(4):
print(f"{i=}")
a = t.shrink(((0+2*i,2+2*i),None))
b = Tensor(t.numpy()[0+2*i:2+2*i])
assert a.shape == b.shape == (2, 8)
np.testing.assert_allclose(a.numpy(), b.numpy())
# cast
np.testing.assert_allclose(a.float().numpy(), b.float().numpy())
# elementwise
np.testing.assert_allclose(a.exp().numpy(), b.exp().numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.reciprocal().numpy(), b.reciprocal().numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.pow(-0.5).numpy(), b.pow(-0.5).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose((a+a).numpy(), (b+b).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_equal((a+1).numpy(), (b+1).numpy())
np.testing.assert_equal((1+a).numpy(), (1+b).numpy())
np.testing.assert_allclose((a.where(a+a, a)).numpy(), (b.where(b+b, b)).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose((a.where(1, 0)).numpy(), (b.where(1, 0)).numpy(), rtol=1e-7, atol=1e-3)
# reduce
np.testing.assert_allclose(a.max().numpy(), b.max().numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.sum().numpy(), b.sum().numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.mean().numpy(), b.mean().numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.max(0).numpy(), b.max(0).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.sum(0).numpy(), b.sum(0).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.mean(0).numpy(), b.mean(0).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.max(1).numpy(), b.max(1).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.sum(1).numpy(), b.sum(1).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.mean(1).numpy(), b.mean(1).numpy(), rtol=1e-7, atol=1e-3)
# pad it back
np.testing.assert_allclose(a.pad(((2*i, 2*(4-i-1)), None)).numpy(), b.pad(((2*i, 2*(4-i-1)), None)).numpy(), rtol=1e-7, atol=1e-3)
# other movement
np.testing.assert_allclose(a.pad((None, (1, 1))).numpy(), b.pad((None, (1, 1))).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.shrink((None, (1, 3))).numpy(), b.shrink((None, (1, 3))).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.permute((1, 0)).numpy(), b.permute((1, 0)).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.reshape((2, 2, 4)).numpy(), b.reshape((2, 2, 4)).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.reshape((2, 1, 8)).expand((2, 5, 8)).numpy(), b.reshape((2, 1, 8)).expand((2, 5, 8)).numpy(), rtol=1e-7, atol=1e-3)
np.testing.assert_allclose(a.flip(-1).numpy(), b.flip(-1).numpy(), rtol=1e-7, atol=1e-3)
@unittest.skip("no longer supports uneven shard")
def test_uneven(self):
t = Tensor.arange(24).reshape(3, 8).contiguous().realize()
t.shard_([f"{Device.DEFAULT}:{i}" for i in range(2)], axis=0)
a = t.shrink(((0, 2), None))
b = t.shrink(((2, 3), None))
na = t.numpy()[0:2]
nb = t.numpy()[2:3]
np.testing.assert_equal(a.numpy(), na)
np.testing.assert_equal(b.numpy(), nb)
np.testing.assert_equal((a+1).numpy(), na+1)
np.testing.assert_equal((b+1).numpy(), nb+1)
np.testing.assert_equal((1+a).numpy(), 1+na)
np.testing.assert_equal((1+b).numpy(), 1+nb)
np.testing.assert_equal((a+a).numpy(), na+na)
np.testing.assert_equal((b+b).numpy(), nb+nb)
# @unittest.skip("why didn't this work?")
def test_add_two_partitions(self):
t = Tensor.arange(64).reshape(8, 8).contiguous().realize()
t.shard_([f"{Device.DEFAULT}:{i}" for i in range(4)], axis=0)
a = t.shrink(((2, 4), None))
b = t.shrink(((6, 8), None))
na = t.numpy()[2:4]
nb = t.numpy()[6:8]
np.testing.assert_equal(a.numpy(), na)
np.testing.assert_equal(b.numpy(), nb)
np.testing.assert_equal((a+b).numpy(), na+nb)
c = a.pad(((2, 4), None)) + b.pad(((6, 0), None))
c.realize()
expected = np.concatenate([np.zeros_like(t.numpy()[0:2]), na, np.zeros_like(t.numpy()[4:6]), nb])
np.testing.assert_equal(c.numpy(), expected)
def test_add_different_tensors(self):
devices = [f"{Device.DEFAULT}:{i}" for i in range(4)]
x = Tensor.arange(64).reshape(8, 8).contiguous().realize().shard(devices, axis=0)
to_add = []
for i in range(len(devices)):
to_add.append((Tensor.ones(2, 8) * i).shard(devices))
added:list[Tensor] = []
for bound, a in zip(x.uop.bounds, to_add):
added.append(x[bound[0]:bound[1]] + a)
output = added[0].cat(*added[1:])
expected = np.arange(64).reshape((8,8)) + np.array([[0,0,1,1,2,2,3,3] for _ in range(8)]).T
np.testing.assert_allclose(output.numpy(), expected)
@unittest.skipIf(not_support_multi_device(), "no multi")
@unittest.skipIf(REAL_DEV == "WEBGPU" and not OSX, "WEBGPU Vulkan can only run kernels with up to 10 buffers")
class TestBatchNorm(unittest.TestCase):
def test_unsynced_backprop_conv_bn(self):
with Tensor.train():
from extra.lr_scheduler import OneCycleLR
convs = [nn.Conv2d(3, 16, 3), nn.Conv2d(3, 16, 3)]
bns = [nn.BatchNorm2d(16), nn.BatchNorm2d(16)]
for p in get_parameters(convs + bns):
p.shard_((d1, d2))
optim = nn.optim.Adam(get_parameters(convs + bns))
lr_sched = OneCycleLR(optim, max_lr=0.1, pct_start=0.1, div_factor=100, final_div_factor=0.1, total_steps=10)
lr_sched.step()
fake_image = Tensor.rand((8, 3, 32, 32)).shard((d1, d2), axis=0)
f1 = fake_image.shrink(((0, 4), None, None, None))
f2 = fake_image.shrink(((4, 8), None, None, None))
out1 = bns[0](convs[0](f1))
out2 = bns[1](convs[1](f2))
out = out1.cat(out2)
optim.zero_grad()
out.mean().backward()
optim.step()
out.numpy()
@unittest.skipIf(REAL_DEV == "WEBGPU" and not OSX, "WEBGPU Vulkan can only run kernels with up to 10 buffers")
def test_unsynced_backprop_standalone_bn(self):
from extra.lr_scheduler import OneCycleLR
GPUS = (d1, d2)
class BatchNorm:
def __init__(self, num_features):
self.bns:list[nn.BatchNorm2d] = []
for _ in GPUS:
bn = nn.BatchNorm2d(num_features, track_running_stats=False, eps=1e-12, momentum=0.85, affine=True)
self.bns.append(bn)
def __call__(self, x:Tensor):
bn_ts = []
each = x.shape[0]//len(self.bns)
for i, bn in enumerate(self.bns):
xi = x.shrink(((each*(i), each*(i+1)), None, None, None))
bni = bn(xi)
bn_ts.append(bni)
return bn_ts[0].cat(*bn_ts[1:])
with Tensor.train():
conv = nn.Conv2d(3, 16, 3)
bn = BatchNorm(16)
for p in get_parameters([conv, bn]):
p.shard_(GPUS)
optim = nn.optim.Adam(get_parameters([conv, bn]))
lr_sched = OneCycleLR(optim, max_lr=0.1, pct_start=0.1, div_factor=100, final_div_factor=0.1, total_steps=10)
lr_sched.step()
fake_image = Tensor.rand((8, 3, 32, 32)).shard(GPUS, axis=0)
out = bn(conv(fake_image))
optim.zero_grad()
out.mean().backward()
optim.step()
def test_unsynced_backprop_sync_weights(self):
from extra.lr_scheduler import OneCycleLR
from examples.hlb_cifar10 import UnsyncedBatchNorm
GPUS = (d1, d2)
with Tensor.train():
conv = nn.Conv2d(3, 16, 3)
bn = UnsyncedBatchNorm(16, num_devices=len(GPUS))
for k, p in get_state_dict([conv, bn]).items():
if 'running_mean' in k or 'running_var' in k:
p.shard_(GPUS, axis=0)
else:
p.to_(GPUS)
optim = nn.optim.Adam(get_parameters([conv, bn]))
lr_sched = OneCycleLR(optim, max_lr=0.1, pct_start=0.1, div_factor=100, final_div_factor=0.1, total_steps=10)
lr_sched.step()
fake_image = Tensor.rand((8, 3, 32, 32)).shard(GPUS, axis=0)
out = bn(conv(fake_image))
optim.zero_grad()
out.mean().backward()
optim.step()
@given(strat.sampled_from((False, True)))
def test_batchnorm(self, is_training):
devices = [f"{Device.DEFAULT}:{i}" for i in range(4)]
x = Tensor.arange(4096).reshape(8, 8, 8, 8).contiguous().realize().shard(devices, axis=0)
with Tensor.train(is_training):
bns = []
for _ in range(len(devices)):
bn = nn.BatchNorm2d(8)
for p in get_parameters(bn):
p.shard_(devices)
bn.weight.requires_grad = True
bn.bias.requires_grad = True
bns.append(bn)
bn_ts = []
for bound, bn in zip(x.uop.bounds, bns):
bni = bn(x[bound[0]:bound[1]])
bn_ts.append(bni)
bn_ts[0].cat(*bn_ts[1:]).numpy()
def test_synced_vs_unsynced_bn(self):
from examples.hlb_cifar10 import UnsyncedBatchNorm
from tinygrad.nn import BatchNorm2d
devices = [f"{Device.DEFAULT}:{i}" for i in range(4)]
x = Tensor.ones(8, 8, 8, 8).contiguous().realize().shard(devices, axis=0)
with Tensor.train():
synced_bn = BatchNorm2d(8)
unsynced_bn = UnsyncedBatchNorm(8, num_devices=len(devices))
for p in get_parameters(synced_bn):
p.shard_(devices)
for k, p in get_state_dict(unsynced_bn).items():
if 'running_mean' in k or 'running_var' in k:
p.shard_(devices, axis=0)
else:
p.to_(devices)
synced_out = synced_bn(x)
synced_si = list(synced_out.schedule())
unsynced_out = unsynced_bn(x)
unsynced_si = list(unsynced_out.schedule())
# TODO: test synced / unsynced batchnorm cross device kernel and copies
assert synced_si
assert unsynced_si
def helper_test_shard_op(shps, fxn, atol=1e-6, rtol=1e-3):
for shp in shps:
single_in = Tensor.randn(shp)
multi_in = single_in.shard(devices_2, axis=0)
single_out = fxn(single_in).numpy()
multi_out = fxn(multi_in).numpy()
try:
assert single_out.shape == multi_out.shape, f"shape mismatch: single={single_out.shape} | multi={multi_out.shape}"
assert single_out.dtype == multi_out.dtype, f"dtype mismatch: single={single_out.dtype} | multi={multi_out.dtype}"
np.testing.assert_allclose(single_out, multi_out, atol=atol, rtol=rtol)
except Exception as e:
raise Exception(f"Failed shape {single_out.shape}: {e}")
@unittest.skipIf(not_support_multi_device(), "no multi")
class TestTensorOps(unittest.TestCase):
def test_interpolate(self):
helper_test_shard_op([(4,16,16),(4,24,24)], lambda x: Tensor.interpolate(x, (19,19)))
def test_bitcast(self):
helper_test_shard_op([(256,), (256,)], lambda x: x.bitcast(dtypes.int))
# TODO: make these tests pass with VIZ=1
@unittest.skipIf(not_support_multi_device(), "no multi")
class TestMultiRamUsage(unittest.TestCase):
def setUp(self):
self.baseline = GlobalCounters.mem_used
self.N = 100
def assertUsed(self, amt, strict=True):
used = GlobalCounters.mem_used - self.baseline
print(f"used {used} bytes")
if strict: self.assertEqual(used, amt)
else: self.assertLessEqual(used, amt)
def test_zeros(self):
_ = Tensor.zeros(self.N, self.N).contiguous().realize()
self.assertUsed(self.N*self.N*4)
def test_zeros_del(self):
_ = Tensor.zeros(self.N, self.N).contiguous().realize()
del _
self.assertUsed(0)
def test_zeros_copy(self):
_ = Tensor.zeros(self.N, self.N).contiguous().to(devices_2).realize()
# NOTE: the first one on the DEFAULT device should be freed
self.assertUsed(self.N*self.N*4*2)
def test_zeros_shard(self, devices=(d1, d2)):
_ = Tensor.zeros(self.N, self.N).contiguous().shard(devices, axis=0).realize()
assert int(os.getenv("VIZ", "0")) == 0
self.assertUsed(self.N*self.N*4) # sharding should not increase total ram usage
def test_zeros_shard_self(self): self.test_zeros_shard((d0, d1))
def test_zeros_contiguous_shard(self):
_ = Tensor.zeros(self.N, self.N).contiguous().shard(devices_2, axis=0).contiguous().realize()
assert int(os.getenv("VIZ", "0")) == 0
self.assertUsed(self.N*self.N*4) # sharding should not increase total ram usage
@unittest.skipIf(not_support_multi_device(), "need multi")
class TestMultiFromUnrenderable(unittest.TestCase):
def test_from_npy(self):
t = Tensor(np.arange(100, dtype=np.uint32))
ll = t.shard((d0, d1), axis=0) + 1
np.testing.assert_equal(ll.numpy(), np.arange(100)+1)
@unittest.skipIf(not_support_multi_device(), "need multi")
class TestMultiAssign(unittest.TestCase):
device = tuple(f"{Device.DEFAULT}:{i}" for i in range(2))
def test_multi_assign_realized(self):
out = Tensor.zeros(4).shard(self.device, 0).contiguous().realize()
ones = Tensor.ones(4).shard(self.device, 0).contiguous().realize()
out.assign(ones).realize()
self.assertListEqual(out.tolist(), [1,1,1,1])
def test_multi_assign_unrealized(self):
out = Tensor.zeros(4).contiguous().realize().shard(self.device, 0)
ones = Tensor.ones(4).shard(self.device, 0).contiguous().realize()
out.assign(ones).realize()
self.assertListEqual(out.tolist(), [1,1,1,1])
def test_multi_assign_both_unrealized(self):
out = Tensor.zeros(4).contiguous().realize().shard(self.device, 0)
ones = Tensor.ones(4).contiguous().realize().shard(self.device, 0)
out.assign(ones).realize()
self.assertListEqual(out.tolist(), [1,1,1,1])
def test_multi_assign_piece(self):
out = Tensor.zeros(4,4).shard(self.device, 0).contiguous().realize()
ones = Tensor.ones(4,1).shard(self.device, 0).contiguous().realize()
out[:, 2:3].assign(ones).realize()
self.assertListEqual(out.tolist(), [[0,0,1,0], [0,0,1,0], [0,0,1,0], [0,0,1,0]])
def test_multi_assign_piece_noncontig(self):
out = Tensor.zeros(4,4).contiguous().realize().shard(self.device, 0).realize()
ones = Tensor.ones(4,1).shard(self.device, 0).contiguous().realize()
out[:, 2:3].assign(ones).realize()
self.assertListEqual(out.tolist(), [[0,0,1,0], [0,0,1,0], [0,0,1,0], [0,0,1,0]])
@unittest.expectedFailure
def test_multi_assign_piece_unrealized(self):
out = Tensor.zeros(4,4).contiguous().realize().shard(self.device, 0)
ones = Tensor.ones(4,1).shard(self.device, 0).contiguous().realize()
out[:, 2:3].assign(ones).realize()
self.assertListEqual(out.tolist(), [[0,0,1,0], [0,0,1,0], [0,0,1,0], [0,0,1,0]])
def test_multi_assign_var_offset(self):
out = Tensor.zeros(4,4).contiguous().realize().shard(self.device, 0).realize()
ones = Tensor.ones(4,1).shard(self.device, 0).contiguous().realize()
vi = Variable("i", 0, 3).bind(2)
out[:, vi:vi+1].assign(ones).realize()
self.assertListEqual(out.tolist(), [[0,0,1,0], [0,0,1,0], [0,0,1,0], [0,0,1,0]])
def test_multi_assign_var_offset_jit_none(self): self.test_multi_assign_var_offset_jit(None)
def test_multi_assign_var_offset_jit(self, shard_axis=0):
out = Tensor.zeros(4,6).contiguous().realize().shard(self.device, shard_axis).realize()
ones = Tensor.ones(4,1).shard(self.device, shard_axis).contiguous().realize()
@TinyJit
def f(out:Tensor, vi):
out[:, vi:vi+1].assign(ones).realize()
ones.assign(ones+1).realize()
vi = Variable("i", 0, 5)
for i in range(1,5):
GlobalCounters.reset()
f(out, vi.bind(i))
self.assertListEqual(out.tolist(), [[0,1,2,3,4,0]]*4)
@unittest.skipIf(not_support_multi_device(), "need multi")
class TestMultiTransformer(unittest.TestCase):
def test_transformer(self):
device = tuple(f"{Device.DEFAULT}:{i}" for i in range(2))
from extra.models.llama import Transformer
args = {"dim": 32, "n_heads": 1, "n_kv_heads": 1, "n_layers": 2, "norm_eps": 1e-5, "rope_theta": 500000, "vocab_size": 1024,
"hidden_dim": 32, "max_context": 12}
real_model = Transformer(**args)
shard_model = Transformer(**args)
# copy state
nn.state.load_state_dict(shard_model, nn.state.get_state_dict(real_model))
# shard
for k,v in nn.state.get_state_dict(shard_model).items():
if 'scale' in k: v.shard_(device, axis=None) # from quantized
elif '.attention.' in k: v.shard_(device, axis=-1)
elif '.feed_forward.w1.' in k: v.shard_(device, axis=0)
elif '.feed_forward.w3.' in k: v.shard_(device, axis=0)
elif '.feed_forward.' in k: v.shard_(device, axis=-1)
elif 'tok_embeddings.weight' in k: v.shard_(device, axis=0)
elif 'output.weight' in k: v.shard_(device, axis=0)
else: v.shard_(device, axis=None)
last_tok = 0
for i in range(10):
real_tok = real_model(Tensor([[last_tok]], device=Device.DEFAULT), i).item()
shard_tok = shard_model(Tensor([[last_tok]], device=device), i).item()
# test kv cache
kv1 = real_model.layers[0].attention.cache_kv.numpy()
kv2 = shard_model.layers[0].attention.cache_kv.numpy()
#print(np.concatenate([kv1[:, :, :, :, 0:1], kv2[:, :, :, :, 0:1]], axis=4))
np.testing.assert_allclose(kv1, kv2, atol=1e-5, rtol=1e-5, err_msg=f"issue at token {i}")
# test token
self.assertEqual(real_tok, shard_tok, f"issue at token {i}")
last_tok = real_tok
@unittest.skip("super slow")
def test_llama1b_full(self):
from tinygrad.helpers import fetch
fetch("https://huggingface.co/bofenghuang/Meta-Llama-3-8B/resolve/main/original/tokenizer.model", "tokenizer.model", subdir="llama3-1b-instruct")
model = fetch("https://huggingface.co/bartowski/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q6_K.gguf",
"Llama-3.2-1B-Instruct-Q6_K.gguf", subdir="llama3-1b-instruct")
device = tuple(f"{Device.DEFAULT}:{i}" for i in range(2))
from examples.llama3 import build_transformer
real_model = build_transformer(model, model_size="1B", device=Device.DEFAULT)
shard_model = build_transformer(model, model_size="1B", device=device)
last_tok = 0
real_tok = real_model(Tensor([[last_tok]], device=Device.DEFAULT), 0)
shard_tok = shard_model(Tensor([[last_tok]], device=device), 0)
self.assertEqual(real_tok.item(), shard_tok.item())
if __name__ == '__main__':
unittest.main()