carrot 9c7833faf9
KerryGold Model, AGNOS12.4, AdjustLaneChange, EnglighSound (#182)
* Vegetarian Filet o Fish model

* fix.. atc..

* test cluster_speed_limit

* fix.. cluster_speed_limit.. 2

* fix.. clusterspeedlimit3

* cruise speed to roadlimit speed

* fix..

* fix.. eng

* deltaUp/Down for lanechange

* fix.. atc desire...

* fix..

* ff

* ff

* fix..

* fix.. eng

* fix engsound

* Update desire_helper.py

* fix.. connect...

* fix curve_min speed

* Revert "fix curve_min speed"

This reverts commit fcc9c2eb14eb3504abef3e420db93e8882e56f37.

* Reapply "fix curve_min speed"

This reverts commit 2d2bba476c58a7b4e13bac3c3ad0e4694c95515d.

* fix.. auto speed up.. roadlimit

* fix.. atc auto lanechange...

* Update desire_helper.py

* Update cruise.py

* debug atc...

* fix.. waze alert offset..

* fix..

* test atc..

* fix..

* fix.. atc

* atc test..

* fix.. atc

* fix.. atc2

* fix.. atc3

* KerryGold Model.  latsmooth_sec = 0.0

* lat smooth seconds 0.13

* fix comment

* fix.. auto cruise, and speed unit

* change lanemode switching.

* erase mazda lkas button.
2025-06-22 10:51:42 +09:00

116 lines
5.4 KiB
Python

import argparse
import os
import sys
from transformers import AutoTokenizer
from pathlib import Path
from typing import Dict, Union
from extra.models.llama import Transformer, convert_from_huggingface, fix_bf16
from examples.llama3 import load
from tinygrad import nn, Tensor
from tinygrad.helpers import fetch, colored, GlobalCounters, Timing, DEBUG
from tinygrad.nn.state import load_state_dict, get_parameters
MODELS = {
"32B": {
"model_params": {"dim": 5120, "n_heads": 40, "n_kv_heads": 8, "n_layers": 64, "norm_eps": 1e-5, "rope_theta": 1000000, "vocab_size": 152064, "hidden_dim": 27648},
"total_num_weights": 17,
"tokenizer": "Qwen/QwQ-32B-Preview"
}
}
def download_weights(total_num_weights:int) -> Path:
model = fetch("https://huggingface.co/Qwen/QwQ-32B-Preview/resolve/main/model.safetensors.index.json?download=true", "model.safetensors.index.json", subdir=(subdir:="qwq_32b_preview"))
for i in range(1, total_num_weights + 1):
filename = f"model-{i:05d}-of-{total_num_weights:05d}.safetensors"
fetch(f"https://huggingface.co/Qwen/QwQ-32B-Preview/resolve/main/{filename}?download=true", filename, subdir=subdir)
return Path(os.path.dirname(model))
def load_model(model_path:Path, model_params:Dict[str, Union[int, float]]) -> Transformer:
# build model
model = Transformer(**model_params, linear=nn.Linear)
# update layers to add bias
updated_layers = []
for layer in model.layers:
head_dim = model_params["dim"] // model_params["n_heads"]
layer.attention.wq = nn.Linear(model_params["dim"], model_params["n_heads"] * head_dim, bias=True)
layer.attention.wk = nn.Linear(model_params["dim"], model_params["n_kv_heads"] * head_dim, bias=True)
layer.attention.wv = nn.Linear(model_params["dim"], model_params["n_kv_heads"] * head_dim, bias=True)
updated_layers.append(layer)
model.layers = updated_layers
# load weights
weights = fix_bf16(convert_from_huggingface(load(str(model_path / "model.safetensors.index.json")), model_params["n_layers"], model_params["n_heads"], model_params["n_kv_heads"], permute_layers=False))
# replace weights in model
load_state_dict(model, weights, strict=False, consume=True)
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run QwQ in tinygrad", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--size", choices=["32B"], default="32B", help="Model size")
parser.add_argument("--count", type=int, default=30, help="Max number of tokens to generate")
parser.add_argument("--temperature", type=float, default=0.7, help="Temperature in the softmax")
parser.add_argument("--prompt", type=str, default="Hello.", help="Phrase to start with")
parser.add_argument("--weights", type=str, default=None, help="Path to the downloaded weights")
parser.add_argument("--timing", action="store_true", help="Print timing per token")
args = parser.parse_args()
model_info = MODELS[args.size]
model_path = Path(args.weights) if args.weights else download_weights(model_info["total_num_weights"])
transformer = load_model(model_path, model_info["model_params"])
tokenizer = AutoTokenizer.from_pretrained(model_info["tokenizer"])
param_bytes = sum(x.uop.size * x.dtype.itemsize for x in get_parameters(transformer))
outputted = args.prompt
start_pos, toks = 0, tokenizer(outputted)["input_ids"]
print(outputted, end="", flush=True)
tok_tensor = None
for i in range(args.count):
GlobalCounters.reset()
if args.timing: print("")
st = GlobalCounters.time_sum_s
next_tok = Tensor([toks[start_pos:]]) if tok_tensor is None or (len(toks)-start_pos) > 1 else tok_tensor.reshape(1, 1)
with Timing("total ", enabled=args.timing, on_exit=lambda x: f", {1e9/x:.2f} tok/s, {GlobalCounters.global_mem/x:.2f} GB/s, param {param_bytes/x:.2f} GB/s"):
with Timing("enqueue in ", on_exit=(lambda et: (f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU" if DEBUG>=2 else "") +
f", {GlobalCounters.global_ops*1e-9:.2f} GOPS, {GlobalCounters.global_mem*1e-9:.2f} GB" +
(f", {GlobalCounters.global_mem*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s, param {param_bytes*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s" if DEBUG>=2 else "")) if DEBUG else None, enabled=args.timing):
tok_tensor = transformer(next_tok, start_pos, args.temperature)
tok = tok_tensor.item()
# use the kv cache
start_pos = len(toks)
# add the new token
toks.append(tok)
cur = tokenizer.decode(toks, skip_special_tokens=True)
sys.stdout.write(cur[len(outputted):])
sys.stdout.flush()
outputted = cur
if args.temperature == 0:
text = tokenizer.decode(toks)
key = (args.size, args.count, args.prompt)
expected = {
("32B", 10, "Hello."): "Hello. I'm trying to make a program that will read",
(
"32B",
50,
"Can you tell me more about machine learning?"
): "Can you tell me more about machine learning? Sure, I'd be happy to help! Machine learning is a subset of artificial intelligence that focuses on building systems that can learn from data and make predictions or decisions without being explicitly programmed to do so. It's a fascinating field with a lot of real"
}
try:
assert text == expected[key], f"invalid output: `{colored(text, 'red')}` != `{expected[key]}`"
print("\n" + colored("output validated", "green"))
except KeyError:
pass