carrot/tinygrad_repo/examples/other_mnist/beautiful_mnist_torch.py
carrot efee1712aa
KerryGoldModel, AGNOS12.3, ButtonMode3, autoDetectLFA2, (#181)
* fix.. speed_limit error...

* draw tpms settings.

* fix.. traffic light stopping only..

* fix.. waze cam

* fix.. waze...

* add setting (Enable comma connect )

* auto detect LFA2

* fix.. cruisespeed1

* vff2 driving model.

* fix..

* agnos 12.3

* fix..

* ff

* ff

* test

* ff

* fix.. drawTurnInfo..

* Update drive_helpers.py

* fix..

support eng  voice

eng sounds

fix settings... english

fix.. mph..

fix.. roadlimit speed bug..

* new vff model.. 250608

* fix soundd..

* fix safe exit speed..

* fix.. sounds.

* fix.. radar timeStep..

* KerryGold model

* Update drive_helpers.py

* fix.. model.

* fix..

* fix..

* Revert "fix.."

This reverts commit b09ec459afb855c533d47fd7e8a1a6b1a09466e7.

* Revert "fix.."

This reverts commit 290bec6b83a4554ca232d531a911edccf94a2156.

* fix esim

* add more acc table. 10kph

* kg update..

* fix cruisebutton mode3

* test atc..cond.

* fix.. canfd

* fix.. angle control limit
2025-06-13 15:59:36 +09:00

70 lines
2.6 KiB
Python

from tinygrad import dtypes, getenv, Device
from tinygrad.helpers import trange, colored, DEBUG, temp
from tinygrad.nn.datasets import mnist
import torch
from torch import nn, optim
class Model(nn.Module):
def __init__(self):
super().__init__()
self.c1 = nn.Conv2d(1, 32, 5)
self.c2 = nn.Conv2d(32, 32, 5)
self.bn1 = nn.BatchNorm2d(32)
self.m1 = nn.MaxPool2d(2)
self.c3 = nn.Conv2d(32, 64, 3)
self.c4 = nn.Conv2d(64, 64, 3)
self.bn2 = nn.BatchNorm2d(64)
self.m2 = nn.MaxPool2d(2)
self.lin = nn.Linear(576, 10)
def forward(self, x):
x = nn.functional.relu(self.c1(x))
x = nn.functional.relu(self.c2(x), 0)
x = self.m1(self.bn1(x))
x = nn.functional.relu(self.c3(x), 0)
x = nn.functional.relu(self.c4(x), 0)
x = self.m2(self.bn2(x))
return self.lin(torch.flatten(x, 1))
if __name__ == "__main__":
if getenv("TINY_BACKEND"):
import tinygrad.frontend.torch
device = torch.device("tiny")
else:
device = torch.device({"METAL":"mps","NV":"cuda"}.get(Device.DEFAULT, "cpu"))
if DEBUG >= 1: print(f"using torch backend {device}")
X_train, Y_train, X_test, Y_test = mnist()
X_train = torch.tensor(X_train.float().numpy(), device=device)
Y_train = torch.tensor(Y_train.cast(dtypes.int64).numpy(), device=device)
X_test = torch.tensor(X_test.float().numpy(), device=device)
Y_test = torch.tensor(Y_test.cast(dtypes.int64).numpy(), device=device)
if getenv("TORCHVIZ"): torch.cuda.memory._record_memory_history()
model = Model().to(device)
optimizer = optim.Adam(model.parameters(), 1e-3)
loss_fn = nn.CrossEntropyLoss()
#@torch.compile
def step(samples):
X,Y = X_train[samples], Y_train[samples]
out = model(X)
loss = loss_fn(out, Y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss
test_acc = float('nan')
for i in (t:=trange(getenv("STEPS", 70))):
samples = torch.randint(0, X_train.shape[0], (512,)) # putting this in JIT didn't work well
loss = step(samples)
if i%10 == 9: test_acc = ((model(X_test).argmax(axis=-1) == Y_test).sum() * 100 / X_test.shape[0]).item()
t.set_description(f"loss: {loss.item():6.2f} test_accuracy: {test_acc:5.2f}%")
# verify eval acc
if target := getenv("TARGET_EVAL_ACC_PCT", 0.0):
if test_acc >= target and test_acc != 100.0: print(colored(f"{test_acc=} >= {target}", "green"))
else: raise ValueError(colored(f"{test_acc=} < {target}", "red"))
if getenv("TORCHVIZ"):
torch.cuda.memory._dump_snapshot(fp:=temp("torchviz.pkl", append_user=True))
print(f"saved torch memory snapshot to {fp}, view in https://pytorch.org/memory_viz")