carrot/tinygrad_repo/examples/benchmark_onnx.py
carrot 9c7833faf9
KerryGold Model, AGNOS12.4, AdjustLaneChange, EnglighSound (#182)
* Vegetarian Filet o Fish model

* fix.. atc..

* test cluster_speed_limit

* fix.. cluster_speed_limit.. 2

* fix.. clusterspeedlimit3

* cruise speed to roadlimit speed

* fix..

* fix.. eng

* deltaUp/Down for lanechange

* fix.. atc desire...

* fix..

* ff

* ff

* fix..

* fix.. eng

* fix engsound

* Update desire_helper.py

* fix.. connect...

* fix curve_min speed

* Revert "fix curve_min speed"

This reverts commit fcc9c2eb14eb3504abef3e420db93e8882e56f37.

* Reapply "fix curve_min speed"

This reverts commit 2d2bba476c58a7b4e13bac3c3ad0e4694c95515d.

* fix.. auto speed up.. roadlimit

* fix.. atc auto lanechange...

* Update desire_helper.py

* Update cruise.py

* debug atc...

* fix.. waze alert offset..

* fix..

* test atc..

* fix..

* fix.. atc

* atc test..

* fix.. atc

* fix.. atc2

* fix.. atc3

* KerryGold Model.  latsmooth_sec = 0.0

* lat smooth seconds 0.13

* fix comment

* fix.. auto cruise, and speed unit

* change lanemode switching.

* erase mazda lkas button.
2025-06-22 10:51:42 +09:00

37 lines
1.2 KiB
Python

import sys, time, pickle
from tinygrad import TinyJit, GlobalCounters, fetch, getenv
from tinygrad.frontend.onnx import OnnxRunner, onnx_load
from extra.onnx_helpers import get_example_inputs, validate
def load_onnx_model(onnx_file):
onnx_model = onnx_load(onnx_file)
run_onnx = OnnxRunner(onnx_model)
run_onnx_jit = TinyJit(lambda **kwargs: next(iter(run_onnx({k:v.to(None) for k,v in kwargs.items()}).values())), prune=True, optimize=True)
return run_onnx_jit, run_onnx.graph_inputs
if __name__ == "__main__":
onnx_file = fetch(sys.argv[1])
run_onnx_jit, input_specs = load_onnx_model(onnx_file)
print("loaded model")
for i in range(3):
new_inputs = get_example_inputs(input_specs)
GlobalCounters.reset()
print(f"run {i}")
run_onnx_jit(**new_inputs)
# run 20 times
for _ in range(20):
new_inputs = get_example_inputs(input_specs)
GlobalCounters.reset()
st = time.perf_counter()
out = run_onnx_jit(**new_inputs)
mt = time.perf_counter()
val = out.numpy()
et = time.perf_counter()
print(f"enqueue {(mt-st)*1e3:6.2f} ms -- total run {(et-st)*1e3:6.2f} ms")
if getenv("ORT"):
validate(onnx_file, new_inputs, rtol=1e-3, atol=1e-3)
print("model validated")