carrot/tinygrad_repo/examples/beautiful_mnist.py
carrot 9c7833faf9
KerryGold Model, AGNOS12.4, AdjustLaneChange, EnglighSound (#182)
* Vegetarian Filet o Fish model

* fix.. atc..

* test cluster_speed_limit

* fix.. cluster_speed_limit.. 2

* fix.. clusterspeedlimit3

* cruise speed to roadlimit speed

* fix..

* fix.. eng

* deltaUp/Down for lanechange

* fix.. atc desire...

* fix..

* ff

* ff

* fix..

* fix.. eng

* fix engsound

* Update desire_helper.py

* fix.. connect...

* fix curve_min speed

* Revert "fix curve_min speed"

This reverts commit fcc9c2eb14eb3504abef3e420db93e8882e56f37.

* Reapply "fix curve_min speed"

This reverts commit 2d2bba476c58a7b4e13bac3c3ad0e4694c95515d.

* fix.. auto speed up.. roadlimit

* fix.. atc auto lanechange...

* Update desire_helper.py

* Update cruise.py

* debug atc...

* fix.. waze alert offset..

* fix..

* test atc..

* fix..

* fix.. atc

* atc test..

* fix.. atc

* fix.. atc2

* fix.. atc3

* KerryGold Model.  latsmooth_sec = 0.0

* lat smooth seconds 0.13

* fix comment

* fix.. auto cruise, and speed unit

* change lanemode switching.

* erase mazda lkas button.
2025-06-22 10:51:42 +09:00

50 lines
1.9 KiB
Python

# model based off https://medium.com/data-science/going-beyond-99-mnist-handwritten-digits-recognition-cfff96337392
from typing import List, Callable
from tinygrad import Tensor, TinyJit, nn, GlobalCounters
from tinygrad.helpers import getenv, colored, trange
from tinygrad.nn.datasets import mnist
class Model:
def __init__(self):
self.layers: List[Callable[[Tensor], Tensor]] = [
nn.Conv2d(1, 32, 5), Tensor.relu,
nn.Conv2d(32, 32, 5), Tensor.relu,
nn.BatchNorm(32), Tensor.max_pool2d,
nn.Conv2d(32, 64, 3), Tensor.relu,
nn.Conv2d(64, 64, 3), Tensor.relu,
nn.BatchNorm(64), Tensor.max_pool2d,
lambda x: x.flatten(1), nn.Linear(576, 10)]
def __call__(self, x:Tensor) -> Tensor: return x.sequential(self.layers)
if __name__ == "__main__":
X_train, Y_train, X_test, Y_test = mnist(fashion=getenv("FASHION"))
model = Model()
opt = nn.optim.Adam(nn.state.get_parameters(model))
@TinyJit
@Tensor.train()
def train_step() -> Tensor:
opt.zero_grad()
samples = Tensor.randint(getenv("BS", 512), high=X_train.shape[0])
# TODO: this "gather" of samples is very slow. will be under 5s when this is fixed
loss = model(X_train[samples]).sparse_categorical_crossentropy(Y_train[samples]).backward()
opt.step()
return loss
@TinyJit
def get_test_acc() -> Tensor: return (model(X_test).argmax(axis=1) == Y_test).mean()*100
test_acc = float('nan')
for i in (t:=trange(getenv("STEPS", 70))):
GlobalCounters.reset() # NOTE: this makes it nice for DEBUG=2 timing
loss = train_step()
if i%10 == 9: test_acc = get_test_acc().item()
t.set_description(f"loss: {loss.item():6.2f} test_accuracy: {test_acc:5.2f}%")
# verify eval acc
if target := getenv("TARGET_EVAL_ACC_PCT", 0.0):
if test_acc >= target and test_acc != 100.0: print(colored(f"{test_acc=} >= {target}", "green"))
else: raise ValueError(colored(f"{test_acc=} < {target}", "red"))