carrot/selfdrive/controls/lib/longitudinal_planner.py
carrot f5e5ce44cc
fix lanemode , roadlimitspeed from car(canfd), (#178)
* enable detect redlight during regen decel..

* button mode 2 decel..

* lanemode timeadjust 0.05 -> 0.07

* limit_accel_in_turn:  unstable decel during cornering

* roadLimitSpeed from Car.

* fix roadlimitSpeed display..

* fix lanemode model condition..

* fix.. typo

* fix.

* test for SK3

* fix.. standstill

* Revert "test for SK3"

This reverts commit b7ab995c5ef2e482b65704fb18c7bc5a3bcf1171.

* fix.. loadLimitSpeed..

* fix roadSpeedLimit(hkg can)

* initial "gas" state for bump

* fix.. lane mode adjust time.. 5 -> 7 -> 6

* test lanemode (curve -> straight)

* fix..  lane

* revert

* fix. laneline curv -> straight..

* fix.. revert

* fix.. lanemode... again..

* canfd 0x1b5
2025-05-29 19:51:47 +09:00

243 lines
11 KiB
Python

#!/usr/bin/env python3
import math
import numpy as np
import cereal.messaging as messaging
from opendbc.car.interfaces import ACCEL_MIN, ACCEL_MAX
from openpilot.common.conversions import Conversions as CV
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.realtime import DT_MDL
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc, N
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
from openpilot.selfdrive.controls.lib.drive_helpers import CONTROL_N, get_speed_error, get_accel_from_plan
from openpilot.selfdrive.car.cruise import V_CRUISE_MAX, V_CRUISE_UNSET
from openpilot.common.swaglog import cloudlog
from openpilot.common.params import Params
LON_MPC_STEP = 0.2 # first step is 0.2s
A_CRUISE_MIN = -2.0 #-1.2
A_CRUISE_MAX_VALS = [1.6, 1.2, 0.8, 0.6]
A_CRUISE_MAX_BP = [0., 10.0, 25., 40.]
CONTROL_N_T_IDX = ModelConstants.T_IDXS[:CONTROL_N]
ALLOW_THROTTLE_THRESHOLD = 0.5
MIN_ALLOW_THROTTLE_SPEED = 2.5
# Lookup table for turns
_A_TOTAL_MAX_V = [1.7, 3.2]
_A_TOTAL_MAX_BP = [20., 40.]
def get_max_accel(v_ego):
return np.interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
def get_coast_accel(pitch):
return np.sin(pitch) * -5.65 - 0.3 # fitted from data using xx/projects/allow_throttle/compute_coast_accel.py
def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
"""
This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
this should avoid accelerating when losing the target in turns
"""
# FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel
# The lookup table for turns should also be updated if we do this
steer_abs = abs(angle_steers)
if v_ego > 20 or (v_ego > 25 and steer_abs < 3.0):
return a_target
a_total_max = np.interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.))
return [a_target[0], min(a_target[1], a_x_allowed)]
class LongitudinalPlanner:
def __init__(self, CP, init_v=0.0, init_a=0.0, dt=DT_MDL):
self.CP = CP
self.mpc = LongitudinalMpc(dt=dt)
self.fcw = False
self.dt = dt
self.allow_throttle = True
self.a_desired = init_a
self.v_desired_filter = FirstOrderFilter(init_v, 2.0, self.dt)
self.prev_accel_clip = [ACCEL_MIN, ACCEL_MAX]
self.v_model_error = 0.0
self.output_a_target = 0.0
self.output_should_stop = False
self.v_desired_trajectory = np.zeros(CONTROL_N)
self.a_desired_trajectory = np.zeros(CONTROL_N)
self.j_desired_trajectory = np.zeros(CONTROL_N)
self.solverExecutionTime = 0.0
self.vCluRatio = 1.0
self.v_cruise_kph = 0.0
@staticmethod
def parse_model(model_msg, model_error):
if (len(model_msg.position.x) == ModelConstants.IDX_N and
len(model_msg.velocity.x) == ModelConstants.IDX_N and
len(model_msg.acceleration.x) == ModelConstants.IDX_N):
x = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.position.x) - model_error * T_IDXS_MPC
v = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.velocity.x) - model_error
a = np.interp(T_IDXS_MPC, ModelConstants.T_IDXS, model_msg.acceleration.x)
j = np.zeros(len(T_IDXS_MPC))
else:
x = np.zeros(len(T_IDXS_MPC))
v = np.zeros(len(T_IDXS_MPC))
a = np.zeros(len(T_IDXS_MPC))
j = np.zeros(len(T_IDXS_MPC))
if len(model_msg.meta.disengagePredictions.gasPressProbs) > 1:
throttle_prob = model_msg.meta.disengagePredictions.gasPressProbs[1]
else:
throttle_prob = 1.0
return x, v, a, j, throttle_prob
def update(self, sm, carrot):
self.mpc.mode = 'blended' if sm['selfdriveState'].experimentalMode else 'acc'
if len(sm['carControl'].orientationNED) == 3:
accel_coast = get_coast_accel(sm['carControl'].orientationNED[1])
else:
accel_coast = ACCEL_MAX
v_ego = sm['carState'].vEgo
v_cruise_kph = min(sm['carState'].vCruise, V_CRUISE_MAX)
self.v_cruise_kph = carrot.update(sm, v_cruise_kph)
self.mpc.mode = carrot.mode
v_cruise = self.v_cruise_kph * CV.KPH_TO_MS
vCluRatio = sm['carState'].vCluRatio
if vCluRatio > 0.5:
self.vCluRatio = vCluRatio
v_cruise *= vCluRatio
v_cruise_initialized = sm['carState'].vCruise != V_CRUISE_UNSET
long_control_off = sm['controlsState'].longControlState == LongCtrlState.off
force_slow_decel = sm['controlsState'].forceDecel
# Reset current state when not engaged, or user is controlling the speed
reset_state = long_control_off if self.CP.openpilotLongitudinalControl else not sm['selfdriveState'].enabled
# PCM cruise speed may be updated a few cycles later, check if initialized
reset_state = reset_state or not v_cruise_initialized or carrot.soft_hold_active
# No change cost when user is controlling the speed, or when standstill
prev_accel_constraint = not (reset_state or sm['carState'].standstill)
if self.mpc.mode == 'acc':
#accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
accel_limits = [A_CRUISE_MIN, carrot.get_carrot_accel(v_ego)]
steer_angle_without_offset = sm['carState'].steeringAngleDeg - sm['liveParameters'].angleOffsetDeg
accel_limits_turns = limit_accel_in_turns(v_ego, steer_angle_without_offset, accel_limits, self.CP)
else:
accel_limits = [ACCEL_MIN, ACCEL_MAX]
accel_limits_turns = [ACCEL_MIN, ACCEL_MAX]
if reset_state:
self.v_desired_filter.x = v_ego
# Clip aEgo to cruise limits to prevent large accelerations when becoming active
self.a_desired = np.clip(sm['carState'].aEgo, accel_limits[0], accel_limits[1])
self.mpc.prev_a = np.full(N+1, self.a_desired) ## carrot
accel_limits_turns[0] = accel_limits_turns[0] = 0.0 ## carrot
# Prevent divergence, smooth in current v_ego
self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
# Compute model v_ego error
self.v_model_error = get_speed_error(sm['modelV2'], v_ego)
x, v, a, j, throttle_prob = self.parse_model(sm['modelV2'], self.v_model_error)
# Don't clip at low speeds since throttle_prob doesn't account for creep
self.allow_throttle = throttle_prob > ALLOW_THROTTLE_THRESHOLD or v_ego <= MIN_ALLOW_THROTTLE_SPEED or self.mpc.mode == 'acc' # carrot: always allow
if not self.allow_throttle:
clipped_accel_coast = max(accel_coast, accel_limits_turns[0])
clipped_accel_coast_interp = np.interp(v_ego, [MIN_ALLOW_THROTTLE_SPEED, MIN_ALLOW_THROTTLE_SPEED*2], [accel_limits_turns[1], clipped_accel_coast])
accel_limits_turns[1] = min(accel_limits_turns[1], clipped_accel_coast_interp)
if force_slow_decel:
v_cruise = 0.0
# clip limits, cannot init MPC outside of bounds
accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05)
accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
self.mpc.set_weights(prev_accel_constraint, personality=sm['selfdriveState'].personality, jerk_factor = carrot.jerk_factor_apply)
self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
self.mpc.update(carrot, reset_state, sm['radarState'], v_cruise, x, v, a, j, personality=sm['selfdriveState'].personality)
self.v_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC, self.mpc.v_solution)
self.a_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC, self.mpc.a_solution)
self.j_desired_trajectory = np.interp(CONTROL_N_T_IDX, T_IDXS_MPC[:-1], self.mpc.j_solution)
# TODO counter is only needed because radar is glitchy, remove once radar is gone
self.fcw = self.mpc.crash_cnt > 2 and not sm['carState'].standstill and not reset_state
if self.fcw:
cloudlog.info("FCW triggered")
# Interpolate 0.05 seconds and save as starting point for next iteration
a_prev = self.a_desired
self.a_desired = float(np.interp(self.dt, CONTROL_N_T_IDX, self.a_desired_trajectory))
self.v_desired_filter.x = self.v_desired_filter.x + self.dt * (self.a_desired + a_prev) / 2.0
longitudinalActuatorDelay = Params().get_float("LongActuatorDelay")*0.01
vEgoStopping = Params().get_float("VEgoStopping") * 0.01
action_t = longitudinalActuatorDelay + DT_MDL
output_a_target_mpc, output_should_stop_mpc = get_accel_from_plan(self.v_desired_trajectory, self.a_desired_trajectory, CONTROL_N_T_IDX,
action_t=action_t, vEgoStopping=vEgoStopping)
output_a_target_e2e = sm['modelV2'].action.desiredAcceleration
output_should_stop_e2e = sm['modelV2'].action.shouldStop
if self.mpc.mode == 'acc':
self.output_a_target = output_a_target_mpc
self.output_should_stop = output_should_stop_mpc
else:
self.output_a_target = min(output_a_target_mpc, output_a_target_e2e)
self.output_should_stop = output_should_stop_e2e or output_should_stop_mpc
#for idx in range(2):
# accel_clip[idx] = np.clip(accel_clip[idx], self.prev_accel_clip[idx] - 0.05, self.prev_accel_clip[idx] + 0.05)
#self.output_a_target = np.clip(output_a_target, accel_clip[0], accel_clip[1])
#self.prev_accel_clip = accel_clip
def publish(self, sm, pm, carrot):
plan_send = messaging.new_message('longitudinalPlan')
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'selfdriveState'])
longitudinalPlan = plan_send.longitudinalPlan
longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2']
longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2']
longitudinalPlan.solverExecutionTime = self.mpc.solve_time
longitudinalPlan.speeds = self.v_desired_trajectory.tolist()
longitudinalPlan.accels = self.a_desired_trajectory.tolist()
longitudinalPlan.jerks = self.j_desired_trajectory.tolist()
longitudinalPlan.hasLead = sm['radarState'].leadOne.status
longitudinalPlan.longitudinalPlanSource = self.mpc.source
longitudinalPlan.fcw = self.fcw
longitudinalPlan.aTarget = float(self.output_a_target)
longitudinalPlan.shouldStop = bool(self.output_should_stop)
longitudinalPlan.allowBrake = True
longitudinalPlan.allowThrottle = bool(self.allow_throttle)
longitudinalPlan.xState = carrot.xState.value
longitudinalPlan.trafficState = carrot.trafficState.value
longitudinalPlan.cruiseTarget = self.v_cruise_kph
longitudinalPlan.tFollow = float(self.mpc.t_follow)
longitudinalPlan.desiredDistance = float(self.mpc.desired_distance)
longitudinalPlan.events = carrot.events.to_msg()
longitudinalPlan.myDrivingMode = carrot.myDrivingMode.value
pm.send('longitudinalPlan', plan_send)