carrot/tinygrad_repo/extra/optimization/test_beam_search.py
Vehicle Researcher 8eb8330d95 openpilot v0.9.9 release
date: 2025-03-08T09:09:29
master commit: ce355250be726f9bc8f0ac165a6cde41586a983d
2025-03-08 09:09:31 +00:00

79 lines
2.4 KiB
Python

import unittest
import numpy as np
from tinygrad.helpers import BEAM, Timing, CI
from tinygrad import Variable, Tensor
from tinygrad.nn import Conv2d
def rand(*shape):
return Tensor(np.random.rand(*shape).astype(np.float32))
class TestBeamSearch(unittest.TestCase):
def setUp(self):
self.old_beam = BEAM.value
BEAM.value = 2
def tearDown(self):
BEAM.value = self.old_beam
def test_variable_ast_beam(self):
a = rand(3, 3).reshape((Variable("a", 1, 10).bind(3), 3))
a = (a+1).realize()
def test_big_prime_number(self):
a = rand(367, 367)
b = rand(367, 367)
c = (a@b).realize()
np.testing.assert_allclose(c.numpy(), a.numpy() @ b.numpy(), atol=1e-4, rtol=1e-4)
def test_big_prime_number_max(self):
a = -rand(367, 367)
b = rand(367, 367)
# if incorrectly padded 0, the max would be 0 instead of a negative number
c = (a*b).max(1)
np.testing.assert_allclose(c.numpy(), (a.numpy() * b.numpy()).max(1), atol=1e-4, rtol=1e-4)
def test_big_prime_number_sum(self):
a = rand(367, 367)
b = rand(367, 367)
# if incorrectly padded 0, the sum would be inf
c = (a/b).sum(1).realize()
np.testing.assert_allclose(c.numpy(), (a.numpy() / b.numpy()).sum(1), atol=1e-4, rtol=1e-4)
def test_variable_big_prime_number(self):
v = Variable("v", 1, 400).bind(367)
a = rand(367, 367)
b = rand(367, 367)
c = (a.reshape(367, v) @ b.reshape(v, 367)).realize()
np.testing.assert_allclose(c.numpy(), a.numpy() @ b.numpy(), atol=1e-4, rtol=1e-4)
def test_variable_shrink_prime_number(self):
v = Variable("v", 1, 400).bind(367)
a = rand(400, 367)
b = (a.shrink(((0,v), None))+1).reshape(367,367).realize()
np.testing.assert_allclose(b.numpy(), a.numpy()[:367]+1, atol=1e-4, rtol=1e-4)
def test_no_mutate_rawbuffers(self):
a = rand(3, 3).realize()
desired = a.numpy() + 1
a.assign(a+1)
actual = a.numpy()
np.testing.assert_allclose(actual, desired)
@unittest.skipIf(CI, "flaky. CL_OUT_OF_RESOURCES")
def test_conv_beam(self):
c = Conv2d(3, 16, (3,3))
x = rand(1,3,32,32)
with Timing():
c(x).realize()
@unittest.skip("flaky, Fatal Python error: Floating point exception")
def test_large_ast(self):
a = Tensor.rand(3, 3)
for _ in range(5):
for _ in range(4):
a = (a + a) * a
a.realize()
if __name__ == '__main__':
unittest.main()