Vehicle Researcher 8eb8330d95 openpilot v0.9.9 release
date: 2025-03-08T09:09:29
master commit: ce355250be726f9bc8f0ac165a6cde41586a983d
2025-03-08 09:09:31 +00:00

104 lines
3.5 KiB
Python

# stuff needed to unpack a kernel
from typing import Tuple
from tinygrad import Variable
from tinygrad.codegen.kernel import Opt, OptOps
from tinygrad.ops import UOp, Ops, KernelInfo
from tinygrad.dtype import dtypes, PtrDType
from tinygrad.shape.shapetracker import ShapeTracker
from tinygrad.shape.view import View
inf, nan = float('inf'), float('nan')
UOps = Ops
# kernel unpacker
from tinygrad.codegen.kernel import Kernel
def ast_str_to_ast(ast_str:str) -> UOp: return eval(ast_str)
def ast_str_to_lin(ast_str:str, opts=None): return Kernel(ast_str_to_ast(ast_str), opts=opts)
def kern_str_to_lin(kern_str:str, opts=None):
(ast, applied_opts,) = eval(kern_str)
k = Kernel(ast, opts=opts)
for opt in applied_opts:
k.apply_opt(opt)
return k
# load worlds, a dataset of about 12k kernels
import gzip
from pathlib import Path
import random
from tinygrad.helpers import dedup, DEBUG
def load_worlds(filter_reduce=True, filter_noimage=True, filter_novariable=True):
fn = Path(__file__).parent.parent / "datasets/sops.gz"
ast_strs = dedup(gzip.open(fn).read().decode('utf-8').strip().split("\n"))
assert len(ast_strs) > 5000, f"dataset size = {len(ast_strs)} is too small"
if DEBUG >= 1: print(f"loaded {len(ast_strs)=} before filters")
if filter_reduce: ast_strs = [x for x in ast_strs if "REDUCE_AXIS" in x]
if filter_noimage: ast_strs = [x for x in ast_strs if "dtypes.image" not in x]
if filter_novariable: ast_strs = [x for x in ast_strs if "DEFINE_VAR" not in x]
if DEBUG >= 1: print(f"loaded {len(ast_strs)=} after filters {filter_reduce=}, {filter_noimage=}, {filter_novariable=}")
random.seed(1337)
random.shuffle(ast_strs)
return ast_strs
def assert_same_lin(l1, l2):
assert l1.colored_shape() == l2.colored_shape()
assert all(x==y for x,y in zip(l1.sts, l2.sts))
# get features
import math
MAX_DIMS = 16
MAX_BUFS = 9
def lin_to_feats(lin:Kernel, use_sts=True):
assert lin.shape_len < MAX_DIMS, "too many dims"
all_colors = ["blue", "cyan", "white", "green", "red", "magenta", "yellow"]
lc = [all_colors.index(x) for x in lin.colors()]
ret = []
# before, some generic linearizer stuff
ret.append(lin.upcasted)
ret.append(lin.local_dims)
# first, the full shape, including the colors
for s,os,c in zip(lin.full_shape,lin.output_shape,lc):
if isinstance(s, UOp):
ret.append(False)
ret += [0]*9
else:
ret.append(True)
ret.append(math.log2(s))
ret.append(min(33, s))
ret.append(math.log2(os))
ret.append(min(33, os))
ret.append(s%2 == 0)
ret.append(s%3 == 0)
ret.append(s%4 == 0)
ret.append(s%8 == 0)
ret.append(s%16 == 0)
cc = [0]*7
cc[c] = 1
ret += cc
ret += [0] * (17*(MAX_DIMS-len(lin.full_shape)))
ret = [float(x) for x in ret]
if use_sts:
my_sts = dedup([(x.shape == lin.full_shape, x.real_strides(), any(v.mask is not None for v in x.views), len(x.views)) for x in lin.sts])
assert len(my_sts) < MAX_BUFS
sts_len = 3 + 5*MAX_DIMS
for s in my_sts:
ret.append(s[0]) # reduce
ret.append(s[2]) # has mask
ret.append(s[3]) # len views
for d in s[1]:
ret.append(d is None)
ret.append(d == 0)
ret.append(d == 1)
ret.append(min(33, d) if d is not None else -1)
if d is not None and d >= 1: ret.append(math.log2(d))
else: ret.append(-1)
ret += [0] * (5*(MAX_DIMS - len(s[1])))
ret += [0] * (sts_len*(MAX_BUFS - len(my_sts)))
assert len(ret) == 1021, f"wrong len {len(ret)}"
else:
assert len(ret) == 274, f"wrong len {len(ret)}"
return ret