
Slow down for anticipated curves detected by the downloaded maps. Credit goes to Pfeiferj! https: //github.com/pfeiferj Co-Authored-By: Jacob Pfeifer <jacob@pfeifer.dev>
154 lines
5.1 KiB
Python
154 lines
5.1 KiB
Python
# PFEIFER - MTSC
|
|
import json
|
|
import math
|
|
|
|
from openpilot.common.conversions import Conversions as CV
|
|
from openpilot.common.numpy_fast import interp
|
|
from openpilot.common.params import Params
|
|
|
|
params_memory = Params("/dev/shm/params")
|
|
|
|
R = 6373000.0 # approximate radius of earth in meters
|
|
TO_RADIANS = math.pi / 180
|
|
TO_DEGREES = 180 / math.pi
|
|
TARGET_JERK = -0.6 # m/s^3 should match up with the long planner
|
|
TARGET_ACCEL = -1.2 # m/s^2 should match up with the long planner
|
|
TARGET_OFFSET = 1.0 # seconds - This controls how soon before the curve you reach the target velocity. It also helps
|
|
# reach the target velocity when innacuracies in the distance modeling logic would cause overshoot.
|
|
# The value is multiplied against the target velocity to determine the additional distance. This is
|
|
# done to keep the distance calculations consistent but results in the offset actually being less
|
|
# time than specified depending on how much of a speed diffrential there is between v_ego and the
|
|
# target velocity.
|
|
|
|
def calculate_accel(t, target_jerk, a_ego):
|
|
return a_ego + target_jerk * t
|
|
|
|
def calculate_velocity(t, target_jerk, a_ego, v_ego):
|
|
return v_ego + a_ego * t + target_jerk/2 * (t ** 2)
|
|
|
|
def calculate_distance(t, target_jerk, a_ego, v_ego):
|
|
return t * v_ego + a_ego/2 * (t ** 2) + target_jerk/6 * (t ** 3)
|
|
|
|
|
|
# points should be in radians
|
|
# output is meters
|
|
def distance_to_point(ax, ay, bx, by):
|
|
a = math.sin((bx-ax)/2)*math.sin((bx-ax)/2) + math.cos(ax) * math.cos(bx)*math.sin((by-ay)/2)*math.sin((by-ay)/2)
|
|
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
|
|
|
|
return R * c # in meters
|
|
|
|
class MapTurnSpeedController:
|
|
def __init__(self):
|
|
self.target_lat = 0.0
|
|
self.target_lon = 0.0
|
|
self.target_v = 0.0
|
|
|
|
def target_speed(self, v_ego, a_ego) -> float:
|
|
lat = 0.0
|
|
lon = 0.0
|
|
try:
|
|
position = json.loads(params_memory.get("LastGPSPosition"))
|
|
lat = position["latitude"]
|
|
lon = position["longitude"]
|
|
except: return 0.0
|
|
|
|
try:
|
|
target_velocities = json.loads(params_memory.get("MapTargetVelocities"))
|
|
except: return 0.0
|
|
|
|
min_dist = 1000
|
|
min_idx = 0
|
|
distances = []
|
|
|
|
# find our location in the path
|
|
for i in range(len(target_velocities)):
|
|
target_velocity = target_velocities[i]
|
|
tlat = target_velocity["latitude"]
|
|
tlon = target_velocity["longitude"]
|
|
d = distance_to_point(lat * TO_RADIANS, lon * TO_RADIANS, tlat * TO_RADIANS, tlon * TO_RADIANS)
|
|
distances.append(d)
|
|
if d < min_dist:
|
|
min_dist = d
|
|
min_idx = i
|
|
|
|
# only look at values from our current position forward
|
|
forward_points = target_velocities[min_idx:]
|
|
forward_distances = distances[min_idx:]
|
|
|
|
# find velocities that we are within the distance we need to adjust for
|
|
valid_velocities = []
|
|
for i in range(len(forward_points)):
|
|
target_velocity = forward_points[i]
|
|
tlat = target_velocity["latitude"]
|
|
tlon = target_velocity["longitude"]
|
|
tv = target_velocity["velocity"]
|
|
if tv > v_ego:
|
|
continue
|
|
|
|
d = forward_distances[i]
|
|
|
|
a_diff = (a_ego - TARGET_ACCEL)
|
|
accel_t = abs(a_diff / TARGET_JERK)
|
|
min_accel_v = calculate_velocity(accel_t, TARGET_JERK, a_ego, v_ego)
|
|
|
|
max_d = 0
|
|
if tv > min_accel_v:
|
|
# calculate time needed based on target jerk
|
|
a = 0.5 * TARGET_JERK
|
|
b = a_ego
|
|
c = v_ego - tv
|
|
t_a = -1 * ((b**2 - 4 * a * c) ** 0.5 + b) / 2 * a
|
|
t_b = ((b**2 - 4 * a * c) ** 0.5 - b) / 2 * a
|
|
if not isinstance(t_a, complex) and t_a > 0:
|
|
t = t_a
|
|
else:
|
|
t = t_b
|
|
if isinstance(t, complex):
|
|
continue
|
|
|
|
max_d = max_d + calculate_distance(t, TARGET_JERK, a_ego, v_ego)
|
|
|
|
else:
|
|
t = accel_t
|
|
max_d = calculate_distance(t, TARGET_JERK, a_ego, v_ego)
|
|
|
|
# calculate additional time needed based on target accel
|
|
t = abs((min_accel_v - tv) / TARGET_ACCEL)
|
|
max_d += calculate_distance(t, 0, TARGET_ACCEL, min_accel_v)
|
|
|
|
if d < max_d + tv * TARGET_OFFSET:
|
|
valid_velocities.append((float(tv), tlat, tlon))
|
|
|
|
# Find the smallest velocity we need to adjust for
|
|
min_v = 100.0
|
|
target_lat = 0.0
|
|
target_lon = 0.0
|
|
for tv, lat, lon in valid_velocities:
|
|
if tv < min_v:
|
|
min_v = tv
|
|
target_lat = lat
|
|
target_lon = lon
|
|
|
|
if self.target_v < min_v and not (self.target_lat == 0 and self.target_lon == 0):
|
|
for i in range(len(forward_points)):
|
|
target_velocity = forward_points[i]
|
|
tlat = target_velocity["latitude"]
|
|
tlon = target_velocity["longitude"]
|
|
tv = target_velocity["velocity"]
|
|
if tv > v_ego:
|
|
continue
|
|
|
|
if tlat == self.target_lat and tlon == self.target_lon and tv == self.target_v:
|
|
return float(self.target_v)
|
|
# not found so lets reset
|
|
self.target_v = 0.0
|
|
self.target_lat = 0.0
|
|
self.target_lon = 0.0
|
|
|
|
self.target_v = min_v
|
|
self.target_lat = target_lat
|
|
self.target_lon = target_lon
|
|
|
|
return min_v
|