carrot/tinygrad_repo/test/models/test_real_world.py
2025-04-19 08:05:49 +09:00

148 lines
6.2 KiB
Python

import unittest, time, gc
import numpy as np
from tinygrad.device import is_dtype_supported
from tinygrad.nn import optim
from tinygrad.nn.state import get_parameters
from tinygrad.engine.jit import TinyJit
from tinygrad import Tensor, Device, GlobalCounters, dtypes, Variable
from tinygrad.helpers import CI, Context
from extra.lr_scheduler import OneCycleLR
from test.helpers import derandomize_model
from examples.gpt2 import Transformer as GPT2Transformer, MODEL_PARAMS as GPT2_MODEL_PARAMS
from examples.hlb_cifar10 import SpeedyResNet, hyp
from examples.llama import Transformer as LLaMaTransformer
from examples.stable_diffusion import UNetModel, unet_params
from extra.models.unet import ResBlock
global_mem_used = 0
def helper_test(nm, gen, model, max_memory_allowed, max_kernels_allowed, all_jitted=False):
with Context(JIT=2):
tms = []
for _ in range(4):
early_gen = [x.realize() if isinstance(x, Tensor) else x for x in gen()]
GlobalCounters.reset()
Device[Device.DEFAULT].synchronize()
st = time.perf_counter_ns()
model(*early_gen)
Device[Device.DEFAULT].synchronize()
tms.append(time.perf_counter_ns() - st)
mem_used = GlobalCounters.mem_used - global_mem_used
# TODO: jit should expose this correctly with graph
kernels_used = len(model.jit_cache) if hasattr(model, "jit_cache") else None
print(f"{nm}: used {mem_used/1e9:.2f} GB and {kernels_used} kernels in {min(tms)/1e6:.2f} ms")
assert mem_used/1e9 < max_memory_allowed, f"{nm} used more than {max_memory_allowed:.2f} GB - {mem_used/1e9:.2} GB used"
assert not kernels_used or kernels_used <= max_kernels_allowed, f"{nm} used more than {max_kernels_allowed} kernels, it used {kernels_used}"
if all_jitted:
assert kernels_used > 0 and kernels_used == GlobalCounters.kernel_count or (kernels_used <= GlobalCounters.kernel_count and getattr(Device[Device.DEFAULT], "graph", None)), f"only {kernels_used} out of {GlobalCounters.kernel_count} were jitted" # noqa: E501
class TestRealWorld(unittest.TestCase):
def setUp(self):
gc.collect()
global global_mem_used
global_mem_used = GlobalCounters.mem_used
self.old_float = dtypes.default_float
np.random.seed(2002)
def tearDown(self):
dtypes.default_float = self.old_float
@unittest.skipIf(CI and Device.DEFAULT == "CPU", "slow, covered by METAL")
@unittest.skipUnless(is_dtype_supported(dtypes.float16), "need dtypes.float16")
def test_stable_diffusion(self):
params = unet_params
params["model_ch"] = 16
params["ctx_dim"] = 16
params["num_res_blocks"] = 1
params["n_heads"] = 2
model = UNetModel(**params)
derandomize_model(model)
@TinyJit
def test(t, t2): return model(t, Tensor([801]), t2).realize()
helper_test("test_sd", lambda: (Tensor.randn(1, 4, 64, 64),Tensor.randn(1, 77, params["ctx_dim"])), test, 18.0, 515)
def test_unet_resblock(self):
model = [ResBlock(16, 24, 16) for _ in range(4)]
derandomize_model(model)
@TinyJit
def test(t, t2):
for l in model: t = l(t, t2)
return t.realize()
helper_test("test_unet_resblock", lambda: (Tensor.empty(4, 16, 8, 8), Tensor.empty(1, 24)), test, 0.01, 37)
@unittest.skipUnless(is_dtype_supported(dtypes.float16), "need dtypes.float16")
def test_llama(self):
dtypes.default_float = dtypes.float16
args_tiny = {"dim": 1024, "hidden_dim": 2048, "n_heads": 8, "n_layers": 8, "norm_eps": 1e-05, "vocab_size": 1000}
model = LLaMaTransformer(**args_tiny)
derandomize_model(model)
@TinyJit
def test(t): return model(t, 0).realize()
# TODO: test first token vs rest properly
helper_test("test_llama", lambda: (Tensor([[1,2,3,4]]),), test, 0.27, 168, all_jitted=True)
@unittest.skipUnless(is_dtype_supported(dtypes.float16), "need dtypes.float16")
def test_gpt2(self):
dtypes.default_float = dtypes.float16
args_tiny = {"dim": 1024, "n_heads": 8, "n_layers": 8, "norm_eps": 1e-5, "vocab_size": 1000}
model = GPT2Transformer(**(args_tiny if CI else GPT2_MODEL_PARAMS["gpt2-medium"]))
derandomize_model(model)
@TinyJit
def test(t, v):
with Context(JIT=0): return model(t, v).realize()
helper_test("test_gpt2", lambda: (Tensor([[1,]]),Variable("pos", 1, 100).bind(1)), test, 0.23 if CI else 0.9, 137 if CI else 396, all_jitted=True)
@unittest.skipIf(CI and Device.DEFAULT == "CPU", "slow")
def test_train_mnist(self):
from examples.beautiful_mnist import Model
with Tensor.train():
model = Model()
optimizer = optim.Adam(get_parameters(model))
BS = 32
@TinyJit
def train(X):
out = model(X)
loss = out.mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
helper_test("train_mnist", lambda: (Tensor.randn(BS, 1, 28, 28),), train, 0.07, 92)
@unittest.skipIf(CI and Device.DEFAULT in {"CPU", "GPU", "LLVM"}, "slow")
def test_train_cifar(self):
with Tensor.train():
model = SpeedyResNet(Tensor.ones((12,3,2,2)))
optimizer = optim.SGD(get_parameters(model), lr=0.01, momentum=0.8, nesterov=True, weight_decay=0.15)
BS = 32
@TinyJit
def train(X):
out = model(X)
loss = out.mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
helper_test("train_cifar", lambda: (Tensor.randn(BS, 3, 32, 32),), train, (1.0/48)*BS, 126)
@unittest.skipUnless(is_dtype_supported(dtypes.float16), "need dtypes.float16")
def test_train_cifar_hyp(self):
dtypes.default_float = dtypes.float16
with Tensor.train():
model = SpeedyResNet(Tensor.ones((12,3,2,2)))
optimizer = optim.SGD(get_parameters(model), lr=0.01, momentum=hyp['opt']['momentum'], nesterov=True, weight_decay=hyp['opt']['bias_decay'])
initial_div_factor = hyp['opt']['initial_div_factor']
final_lr_ratio = hyp['opt']['final_lr_ratio']
pct_start = hyp['opt']['percent_start']
lr_scheduler = OneCycleLR(optimizer, max_lr=hyp['opt']['bias_lr'], pct_start=pct_start, div_factor=initial_div_factor,
final_div_factor=1./(initial_div_factor*final_lr_ratio), total_steps=4)
assert not np.isnan(lr_scheduler.min_lr), "lr too small or initial_div_facotr too big for half"
if __name__ == '__main__':
unittest.main()