carrot efee1712aa
KerryGoldModel, AGNOS12.3, ButtonMode3, autoDetectLFA2, (#181)
* fix.. speed_limit error...

* draw tpms settings.

* fix.. traffic light stopping only..

* fix.. waze cam

* fix.. waze...

* add setting (Enable comma connect )

* auto detect LFA2

* fix.. cruisespeed1

* vff2 driving model.

* fix..

* agnos 12.3

* fix..

* ff

* ff

* test

* ff

* fix.. drawTurnInfo..

* Update drive_helpers.py

* fix..

support eng  voice

eng sounds

fix settings... english

fix.. mph..

fix.. roadlimit speed bug..

* new vff model.. 250608

* fix soundd..

* fix safe exit speed..

* fix.. sounds.

* fix.. radar timeStep..

* KerryGold model

* Update drive_helpers.py

* fix.. model.

* fix..

* fix..

* Revert "fix.."

This reverts commit b09ec459afb855c533d47fd7e8a1a6b1a09466e7.

* Revert "fix.."

This reverts commit 290bec6b83a4554ca232d531a911edccf94a2156.

* fix esim

* add more acc table. 10kph

* kg update..

* fix cruisebutton mode3

* test atc..cond.

* fix.. canfd

* fix.. angle control limit
2025-06-13 15:59:36 +09:00

247 lines
11 KiB
Python

#!/usr/bin/env python3
import os, argparse, contextlib
from typing import Optional, Union
with contextlib.suppress(ImportError): import tiktoken
from tinygrad import Tensor, TinyJit, Device, GlobalCounters, Variable, dtypes
from tinygrad.uop.ops import UOp
from tinygrad.helpers import Timing, DEBUG, JIT, getenv, fetch, colored, trange
from tinygrad.nn import Embedding, Linear, LayerNorm
from tinygrad.nn.state import gguf_load, torch_load, load_state_dict, get_state_dict
from extra.bench_log import BenchEvent, WallTimeEvent
MAX_CONTEXT = getenv("MAX_CONTEXT", 128)
HALF = getenv("HALF")
class Attention:
def __init__(self, dim, n_heads):
self.c_attn = Linear(dim, 3*dim, bias=True)
self.c_proj = Linear(dim, dim, bias=True)
self.n_heads = n_heads
self.dim = dim
self.head_dim = dim // n_heads
def __call__(self, x:Tensor, start_pos:Variable, mask:Optional[Tensor]) -> Tensor:
if mask is not None or start_pos.val == 0:
# no symbolic shape qkv when consuming prompts
start_pos = start_pos.val
if HALF: x = x.half()
xqkv = self.c_attn(x)
xq, xk, xv = [xqkv.shrink((None, None, (i*self.dim, (i+1)*self.dim))).reshape(None, None, self.n_heads, self.head_dim) for i in range(3)]
bsz, seqlen, _, _ = xq.shape
# create kv cache
if not hasattr(self, "cache_kv"):
self.cache_kv = Tensor.zeros(2, bsz, MAX_CONTEXT, self.n_heads, self.head_dim, dtype=x.dtype).contiguous().realize()
# update the cache
self.cache_kv.shrink((None, None,(start_pos,start_pos+seqlen),None,None)).assign(Tensor.stack(xk, xv)).realize()
if start_pos > 0:
keys = self.cache_kv[0].shrink((None, (0, start_pos+seqlen), None, None))
values = self.cache_kv[1].shrink((None, (0, start_pos+seqlen), None, None))
else:
keys = xk
values = xv
xq, keys, values = xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2)
return self.c_proj(xq.scaled_dot_product_attention(keys, values, mask).transpose(1, 2).reshape(bsz, seqlen, self.dim))
class FeedForward:
def __init__(self, dim, hidden_dim):
self.c_fc = Linear(dim, hidden_dim, bias=True)
self.c_proj = Linear(hidden_dim, dim, bias=True)
def __call__(self, x:Tensor) -> Tensor:
return self.c_proj(self.c_fc(x).gelu())
class TransformerBlock:
def __init__(self, dim, n_heads, norm_eps):
self.attn = Attention(dim, n_heads)
self.mlp = FeedForward(dim, 4*dim)
self.ln_1 = LayerNorm(dim, norm_eps)
self.ln_2 = LayerNorm(dim, norm_eps)
def __call__(self, x:Tensor, start_pos:Variable, mask:Optional[Tensor]):
h = x + self.attn(self.ln_1(x), start_pos, mask).float()
return (h + self.mlp(self.ln_2(h)))
class Transformer:
def __init__(self, dim, n_heads, n_layers, norm_eps, vocab_size, max_seq_len=1024):
self.vocab_size = vocab_size
self.wte = Embedding(vocab_size, dim)
self.wpe = Embedding(max_seq_len, dim)
self.h = [TransformerBlock(dim, n_heads, norm_eps) for _ in range(n_layers)]
self.ln_f = LayerNorm(dim, norm_eps)
self.lm_head = Linear(dim, vocab_size, bias=False)
self.forward_jit = TinyJit(self.forward)
def forward(self, tokens:Union[Tensor,UOp], start_pos:Variable, temperature:float=0.0):
if not hasattr(self, 'allpos'): self.allpos = Tensor.arange(0, MAX_CONTEXT).reshape(1, -1).realize()
if isinstance(tokens, UOp):
seqlen = 1
tok_emb = self.wte.weight.shrink(((tokens, tokens+1), None))
else:
seqlen = tokens.shape[1]
tok_emb = self.wte(tokens)
pos_emb = self.wpe(self.allpos.shrink((None, (start_pos, start_pos+seqlen))))
h = tok_emb + pos_emb
if HALF: h = h.half()
mask = Tensor.full((1, 1, seqlen, start_pos.val+seqlen), float("-inf"), dtype=h.dtype).triu(start_pos.val+1) if seqlen > 1 else None
for hi in self.h: h = hi(h, start_pos, mask)
logits = self.lm_head(self.ln_f(h))
if logits.shape[1] == 0:
# special case for empty prompt
logits = Tensor.ones((logits.shape[0], self.vocab_size), dtype=logits.dtype, device=logits.device)
else:
logits = logits[:, -1, :]
if temperature < 1e-6:
ret = logits.argmax(-1)
else:
ret = (logits / temperature).softmax().multinomial()
return ret.flatten().realize()
def __call__(self, tokens:Union[Tensor,UOp], start_pos:Variable, temperature:float=0.0) -> Tensor:
forward = (self.forward_jit if JIT and (isinstance(tokens, UOp) or tokens.shape[1] == 1) else self.forward)
return forward(tokens, start_pos, temperature)
VOCAB_SIZE = 50257
MODEL_PARAMS = {
'gpt2': dict(n_layers=12, n_heads=12, dim=768, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 124M params
'gpt2-medium': dict(n_layers=24, n_heads=16, dim=1024, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 350M params
'gpt2-large': dict(n_layers=36, n_heads=20, dim=1280, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 774M params
'gpt2-xl': dict(n_layers=48, n_heads=25, dim=1600, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 1558M params
}
class GPT2:
@staticmethod
def build(model_size="gpt2"):
tokenizer = tiktoken.get_encoding("gpt2")
model = Transformer(**MODEL_PARAMS[model_size])
weights = torch_load(fetch(f'https://huggingface.co/{model_size}/resolve/main/pytorch_model.bin'))
# special treatment for the Conv1D weights we need to transpose
transposed = ('attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight')
for k in weights:
if k.endswith(transposed):
weights[k] = weights[k].T
# lm head and wte are tied
weights['lm_head.weight'] = weights['wte.weight']
with WallTimeEvent(BenchEvent.LOAD_WEIGHTS):
load_state_dict(model, weights)
if HALF:
for l in get_state_dict(model).values():
l.replace(l.half().realize())
return GPT2(model, tokenizer)
@staticmethod
def build_gguf(model_size: str):
q_type = model_size[len("gpt2_gguf_"):].upper()
fn = fetch(f"https://huggingface.co/PrunaAI/gpt2-GGUF-smashed/resolve/main/gpt2.{q_type}.gguf?download=true")
gguf_tensor = Tensor.empty(os.stat(fn).st_size, dtype=dtypes.uint8, device=f"disk:{fn}").to(Device.DEFAULT)
kv_data, state_dict = gguf_load(gguf_tensor)
gpt2_params = {
"dim": kv_data["gpt2.embedding_length"], "n_heads": kv_data["gpt2.attention.head_count"],
"n_layers": kv_data["gpt2.block_count"], "norm_eps": kv_data["gpt2.attention.layer_norm_epsilon"],
"vocab_size": VOCAB_SIZE, "max_seq_len": kv_data["gpt2.context_length"],
}
def _remap_gguf_key(key: str):
replaces = [
("blk.", "h."), (".attn_qkv.bias", ".attn.c_attn.bias"), (".attn_qkv.weight", ".attn.c_attn.weight"),
(".ffn_norm.bias", ".ln_2.bias"), (".ffn_norm.weight", ".ln_2.weight"), (".attn_norm.bias", ".ln_1.bias"),
(".attn_norm.weight", ".ln_1.weight"), (".attn_output.bias", ".attn.c_proj.bias"), (".attn_output.weight", ".attn.c_proj.weight"),
(".ffn_up.bias", ".mlp.c_fc.bias"), (".ffn_up.weight", ".mlp.c_fc.weight"), (".ffn_down.bias", ".mlp.c_proj.bias"),
(".ffn_down.weight", ".mlp.c_proj.weight"), ("token_embd.weight", "wte.weight"), ("output.weight", "lm_head.weight"),
("output_norm.bias", "ln_f.bias"), ("output_norm.weight", "ln_f.weight"), ("position_embd.weight", "wpe.weight"),
]
for ostr, ns in replaces: key = key.replace(ostr, ns)
return key
state_dict = { _remap_gguf_key(k): v for k, v in state_dict.items() }
model = Transformer(**gpt2_params)
with WallTimeEvent(BenchEvent.LOAD_WEIGHTS):
load_state_dict(model, state_dict)
return GPT2(model, tiktoken.get_encoding("gpt2"))
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
def generate(self, prompt:str, max_length:int, temperature:float, timing:bool=False, batch_size:int=1):
prompt_tokens = self.tokenizer.encode(prompt, allowed_special={"<|endoftext|>"})
toks = [prompt_tokens[:] for _ in range(batch_size)]
start_pos = 0
for _ in trange(max_length, disable=(timing==True)):
GlobalCounters.reset()
if timing: print("")
st = GlobalCounters.time_sum_s
with Timing("ran model in ", on_exit=(lambda et: (f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU" if DEBUG>=2 else "")+
f", {GlobalCounters.global_ops*1e-9:.2f} GOPS, {GlobalCounters.global_mem*1e-9:.2f} GB"+
(f", {GlobalCounters.global_mem*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s" if DEBUG>=2 else "")) if DEBUG else None, enabled=timing):
with WallTimeEvent(BenchEvent.STEP):
if batch_size == 1 and len(toks[0][start_pos:]) == 1:
tokens = Variable("tokens", 0, VOCAB_SIZE).bind(toks[0][start_pos])
else:
tokens = Tensor([x[start_pos:] for x in toks])
tok = self.model(tokens, Variable("start_pos", 1 if start_pos else 0, MAX_CONTEXT-1).bind(start_pos), temperature).tolist()
start_pos = len(toks[0])
for i,t in enumerate(tok): toks[i].append(t)
return [self.tokenizer.decode(x) for x in toks]
# **** main code ****
if __name__ == "__main__":
Tensor.no_grad = True
print(f"using {Device.DEFAULT} backend")
default_prompt = "What is the answer to life, the universe, and everything?"
parser = argparse.ArgumentParser(description='Run GPT2 in tinygrad', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--prompt', type=str, default=default_prompt, help="Phrase to start with")
parser.add_argument('--count', type=int, default=100, help="Max number of tokens to generate")
parser.add_argument('--temperature', type=float, default=0.8, help="Temperature in the softmax")
parser.add_argument('--model_size', type=str, default="gpt2-medium", help="Size of model to use [gpt2, gpt2-medium, gpt2-large, gpt2-xl]")
parser.add_argument('--timing', action='store_true', help="Print timing per token")
parser.add_argument('--seed', type=int, help="Set the random seed")
parser.add_argument('--batch_size', type=int, default=1, help="Set the input batch size")
parser.add_argument('--benchmark', type=int, default=-1, help="Benchmark GPT with the given number of tokens")
parser.add_argument('--noshow', action='store_true', help="Don't show the output")
args = parser.parse_args()
if args.seed is not None:
Tensor.manual_seed(args.seed)
print(f"using {args.model_size}")
gpt2 = GPT2.build_gguf(args.model_size) if args.model_size.startswith("gpt2_gguf_") else GPT2.build(args.model_size)
if args.benchmark != -1:
gpt2.model(Tensor.rand(args.batch_size, args.benchmark), Variable("a", 0, MAX_CONTEXT).bind(0)).realize()
else:
texts = gpt2.generate(args.prompt, args.count, args.temperature, timing=args.timing, batch_size=args.batch_size)
if not args.noshow:
print('Generating text...')
if len(texts) == 1: print(texts[0])
else:
for i,text in enumerate(texts): print(colored(f"Response {i}:", "green"), text)
# validate output!
if args.temperature == 0 and args.model_size == "gpt2-medium" and args.count == 10:
expected = {
default_prompt: "What is the answer to life, the universe, and everything?\n\nThe answer is that we are all one",
"Hello.": "Hello. I'm a little late to the party, but",
}
try:
assert texts[0] == expected[args.prompt]
print(colored("output validated", "green"))
except KeyError:
pass