Vehicle Researcher 4fca6dec8e openpilot v0.9.8 release
date: 2025-01-29T09:09:56
master commit: 227bb68e1891619b360b89809e6822d50d34228f
2025-01-29 09:09:58 +00:00

308 lines
12 KiB
Python
Executable File

#!/usr/bin/env python3
import os
import sys
from collections import defaultdict
from typing import Any
import tempfile
from itertools import zip_longest
import matplotlib.pyplot as plt
import numpy as np
from tabulate import tabulate
from openpilot.common.git import get_commit
from openpilot.system.hardware import PC
from openpilot.tools.lib.openpilotci import get_url
from openpilot.selfdrive.test.process_replay.compare_logs import compare_logs, format_diff
from openpilot.selfdrive.test.process_replay.process_replay import get_process_config, replay_process
from openpilot.tools.lib.framereader import FrameReader, NumpyFrameReader
from openpilot.tools.lib.logreader import LogReader, save_log
from openpilot.tools.lib.github_utils import GithubUtils
TEST_ROUTE = "2f4452b03ccb98f0|2022-12-03--13-45-30"
SEGMENT = 6
MAX_FRAMES = 100 if PC else 400
NO_MODEL = "NO_MODEL" in os.environ
SEND_EXTRA_INPUTS = bool(int(os.getenv("SEND_EXTRA_INPUTS", "0")))
DATA_TOKEN = os.getenv("CI_ARTIFACTS_TOKEN","")
API_TOKEN = os.getenv("GITHUB_COMMENTS_TOKEN","")
MODEL_REPLAY_BUCKET="model_replay_master"
GITHUB = GithubUtils(API_TOKEN, DATA_TOKEN)
EXEC_TIMINGS = [
# model, instant max, average max
("modelV2", 0.03, 0.025),
("driverStateV2", 0.02, 0.015),
]
def get_log_fn(test_route, ref="master"):
return f"{test_route}_model_tici_{ref}.zst"
def plot(proposed, master, title, tmp):
proposed = list(proposed)
master = list(master)
fig, ax = plt.subplots()
ax.plot(master, label='MASTER')
ax.plot(proposed, label='PROPOSED')
plt.legend(loc='best')
plt.title(title)
plt.savefig(f'{tmp}/{title}.png')
return (title + '.png', proposed == master)
def get_event(logs, event):
return (getattr(m, m.which()) for m in filter(lambda m: m.which() == event, logs))
def zl(array, fill):
return zip_longest(array, [], fillvalue=fill)
def get_idx_if_non_empty(l, idx=None):
return l if idx is None else (l[idx] if len(l) > 0 else None)
def generate_report(proposed, master, tmp, commit):
ModelV2_Plots = zl([
(lambda x: get_idx_if_non_empty(x.velocity.x, 0), "velocity.x"),
(lambda x: get_idx_if_non_empty(x.action.desiredCurvature), "desiredCurvature"),
(lambda x: get_idx_if_non_empty(x.leadsV3[0].x, 0), "leadsV3.x"),
(lambda x: get_idx_if_non_empty(x.laneLines[1].y, 0), "laneLines.y"),
(lambda x: get_idx_if_non_empty(x.meta.disengagePredictions.gasPressProbs, 1), "gasPressProbs")
], "modelV2")
DriverStateV2_Plots = zl([
(lambda x: get_idx_if_non_empty(x.wheelOnRightProb), "wheelOnRightProb"),
(lambda x: get_idx_if_non_empty(x.leftDriverData.faceProb), "leftDriverData.faceProb"),
(lambda x: get_idx_if_non_empty(x.leftDriverData.faceOrientation, 0), "leftDriverData.faceOrientation0"),
(lambda x: get_idx_if_non_empty(x.leftDriverData.leftBlinkProb), "leftDriverData.leftBlinkProb"),
(lambda x: get_idx_if_non_empty(x.leftDriverData.notReadyProb, 0), "leftDriverData.notReadyProb0"),
(lambda x: get_idx_if_non_empty(x.rightDriverData.faceProb), "rightDriverData.faceProb"),
], "driverStateV2")
return [plot(map(v[0], get_event(proposed, event)), \
map(v[0], get_event(master, event)), f"{v[1]}_{commit[:7]}", tmp) \
for v,event in ([*ModelV2_Plots] + [*DriverStateV2_Plots])]
def create_table(title, files, link, open_table=False):
if not files:
return ""
table = [f'<details {"open" if open_table else ""}><summary>{title}</summary><table>']
for i,f in enumerate(files):
if not (i % 2):
table.append("<tr>")
table.append(f'<td><img src=\\"{link}/{f[0]}\\"></td>')
if (i % 2):
table.append("</tr>")
table.append("</table></details>")
table = "".join(table)
return table
def comment_replay_report(proposed, master, full_logs):
with tempfile.TemporaryDirectory() as tmp:
PR_BRANCH = os.getenv("GIT_BRANCH","")
DATA_BUCKET = f"model_replay_{PR_BRANCH}"
try:
GITHUB.get_pr_number(PR_BRANCH)
except Exception:
print("No PR associated with this branch. Skipping report.")
return
commit = get_commit()
files = generate_report(proposed, master, tmp, commit)
GITHUB.upload_files(DATA_BUCKET, [(x[0], tmp + '/' + x[0]) for x in files])
log_name = get_log_fn(TEST_ROUTE, commit)
save_log(log_name, full_logs)
GITHUB.upload_file(DATA_BUCKET, os.path.basename(log_name), log_name)
diff_files = [x for x in files if not x[1]]
link = GITHUB.get_bucket_link(DATA_BUCKET)
diff_plots = create_table("Model Replay Differences", diff_files, link, open_table=True)
all_plots = create_table("All Model Replay Plots", files, link)
comment = f"ref for commit {commit}: {link}/{log_name}" + diff_plots + all_plots
GITHUB.comment_on_pr(comment, PR_BRANCH)
def trim_logs_to_max_frames(logs, max_frames, frs_types, include_all_types):
all_msgs = []
cam_state_counts = defaultdict(int)
# keep adding messages until cam states are equal to MAX_FRAMES
for msg in sorted(logs, key=lambda m: m.logMonoTime):
all_msgs.append(msg)
if msg.which() in frs_types:
cam_state_counts[msg.which()] += 1
if all(cam_state_counts[state] == max_frames for state in frs_types):
break
if len(include_all_types) != 0:
other_msgs = [m for m in logs if m.which() in include_all_types]
all_msgs.extend(other_msgs)
return all_msgs
def model_replay(lr, frs):
# modeld is using frame pairs
modeld_logs = trim_logs_to_max_frames(lr, MAX_FRAMES, {"roadCameraState", "wideRoadCameraState"}, {"roadEncodeIdx", "wideRoadEncodeIdx", "carParams"})
dmodeld_logs = trim_logs_to_max_frames(lr, MAX_FRAMES, {"driverCameraState"}, {"driverEncodeIdx", "carParams"})
if not SEND_EXTRA_INPUTS:
modeld_logs = [msg for msg in modeld_logs if msg.which() != 'liveCalibration']
dmodeld_logs = [msg for msg in dmodeld_logs if msg.which() != 'liveCalibration']
# initial setup
for s in ('liveCalibration', 'deviceState'):
msg = next(msg for msg in lr if msg.which() == s).as_builder()
msg.logMonoTime = lr[0].logMonoTime
modeld_logs.insert(1, msg.as_reader())
dmodeld_logs.insert(1, msg.as_reader())
modeld = get_process_config("modeld")
dmonitoringmodeld = get_process_config("dmonitoringmodeld")
modeld_msgs = replay_process(modeld, modeld_logs, frs)
if isinstance(frs['roadCameraState'], NumpyFrameReader):
del frs['roadCameraState'].frames
del frs['wideRoadCameraState'].frames
dmonitoringmodeld_msgs = replay_process(dmonitoringmodeld, dmodeld_logs, frs)
msgs = modeld_msgs + dmonitoringmodeld_msgs
header = ['model', 'max instant', 'max instant allowed', 'average', 'max average allowed', 'test result']
rows = []
timings_ok = True
for (s, instant_max, avg_max) in EXEC_TIMINGS:
ts = [getattr(m, s).modelExecutionTime for m in msgs if m.which() == s]
# TODO some init can happen in first iteration
ts = ts[1:]
errors = []
if np.max(ts) > instant_max:
errors.append("❌ FAILED MAX TIMING CHECK ❌")
if np.mean(ts) > avg_max:
errors.append("❌ FAILED AVG TIMING CHECK ❌")
timings_ok = not errors and timings_ok
rows.append([s, np.max(ts), instant_max, np.mean(ts), avg_max, "\n".join(errors) or ""])
print("------------------------------------------------")
print("----------------- Model Timing -----------------")
print("------------------------------------------------")
print(tabulate(rows, header, tablefmt="simple_grid", stralign="center", numalign="center", floatfmt=".4f"))
assert timings_ok
return msgs
def get_frames():
regen_cache = "--regen-cache" in sys.argv
cache = "--cache" in sys.argv or not PC or regen_cache
videos = ('fcamera.hevc', 'dcamera.hevc', 'ecamera.hevc')
cams = ('roadCameraState', 'driverCameraState', 'wideRoadCameraState')
if cache:
frames_cache = '/tmp/model_replay_cache' if PC else '/data/model_replay_cache'
os.makedirs(frames_cache, exist_ok=True)
cache_size = 200
for v in videos:
if not all(os.path.isfile(f'{frames_cache}/{TEST_ROUTE}_{v}_{i}.npy') for i in range(MAX_FRAMES//cache_size)) or regen_cache:
f = FrameReader(get_url(TEST_ROUTE, SEGMENT, v)).get(0, MAX_FRAMES + 1, pix_fmt="nv12")
print(f'Caching {v}...')
for i in range(MAX_FRAMES//cache_size):
np.save(f'{frames_cache}/{TEST_ROUTE}_{v}_{i}', f[(i * cache_size) + 1:((i + 1) * cache_size) + 1])
del f
return {c : NumpyFrameReader(f"{frames_cache}/{TEST_ROUTE}_{v}", 1928, 1208, cache_size) for c,v in zip(cams, videos, strict=True)}
else:
return {c : FrameReader(get_url(TEST_ROUTE, SEGMENT, v), readahead=True) for c,v in zip(cams, videos, strict=True)}
if __name__ == "__main__":
update = "--update" in sys.argv or (os.getenv("GIT_BRANCH", "") == 'master')
replay_dir = os.path.dirname(os.path.abspath(__file__))
# load logs
lr = list(LogReader(get_url(TEST_ROUTE, SEGMENT, "rlog.zst")))
frs = get_frames()
log_msgs = []
# run replays
if not NO_MODEL:
log_msgs += model_replay(lr, frs)
# get diff
failed = False
if not update:
log_fn = get_log_fn(TEST_ROUTE)
try:
all_logs = list(LogReader(GITHUB.get_file_url(MODEL_REPLAY_BUCKET, log_fn)))
cmp_log = []
# logs are ordered based on type: modelV2, drivingModelData, driverStateV2
if not NO_MODEL:
model_start_index = next(i for i, m in enumerate(all_logs) if m.which() in ("modelV2", "drivingModelData", "cameraOdometry"))
cmp_log += all_logs[model_start_index:model_start_index + MAX_FRAMES*3]
dmon_start_index = next(i for i, m in enumerate(all_logs) if m.which() == "driverStateV2")
cmp_log += all_logs[dmon_start_index:dmon_start_index + MAX_FRAMES]
ignore = [
'logMonoTime',
'drivingModelData.frameDropPerc',
'drivingModelData.modelExecutionTime',
'modelV2.frameDropPerc',
'modelV2.modelExecutionTime',
'driverStateV2.modelExecutionTime',
'driverStateV2.gpuExecutionTime'
]
if PC:
# TODO We ignore whole bunch so we can compare important stuff
# like posenet with reasonable tolerance
ignore += ['modelV2.acceleration.x',
'modelV2.position.x',
'modelV2.position.xStd',
'modelV2.position.y',
'modelV2.position.yStd',
'modelV2.position.z',
'modelV2.position.zStd',
'drivingModelData.path.xCoefficients',]
for i in range(3):
for field in ('x', 'y', 'v', 'a'):
ignore.append(f'modelV2.leadsV3.{i}.{field}')
ignore.append(f'modelV2.leadsV3.{i}.{field}Std')
for i in range(4):
for field in ('x', 'y', 'z', 't'):
ignore.append(f'modelV2.laneLines.{i}.{field}')
for i in range(2):
for field in ('x', 'y', 'z', 't'):
ignore.append(f'modelV2.roadEdges.{i}.{field}')
tolerance = .3 if PC else None
results: Any = {TEST_ROUTE: {}}
log_paths: Any = {TEST_ROUTE: {"models": {'ref': log_fn, 'new': log_fn}}}
results[TEST_ROUTE]["models"] = compare_logs(cmp_log, log_msgs, tolerance=tolerance, ignore_fields=ignore)
diff_short, diff_long, failed = format_diff(results, log_paths, 'master')
if "CI" in os.environ:
comment_replay_report(log_msgs, cmp_log, log_msgs)
failed = False
print(diff_long)
print('-------------\n'*5)
print(diff_short)
with open("model_diff.txt", "w") as f:
f.write(diff_long)
except Exception as e:
print(str(e))
failed = True
# upload new refs
if update and not PC:
print("Uploading new refs")
log_fn = get_log_fn(TEST_ROUTE)
save_log(log_fn, log_msgs)
try:
GITHUB.upload_file(MODEL_REPLAY_BUCKET, os.path.basename(log_fn), log_fn)
except Exception as e:
print("failed to upload", e)
sys.exit(int(failed))