carrot/tinygrad_repo/test/external/external_uop_gc.py
carrot 9c7833faf9
KerryGold Model, AGNOS12.4, AdjustLaneChange, EnglighSound (#182)
* Vegetarian Filet o Fish model

* fix.. atc..

* test cluster_speed_limit

* fix.. cluster_speed_limit.. 2

* fix.. clusterspeedlimit3

* cruise speed to roadlimit speed

* fix..

* fix.. eng

* deltaUp/Down for lanechange

* fix.. atc desire...

* fix..

* ff

* ff

* fix..

* fix.. eng

* fix engsound

* Update desire_helper.py

* fix.. connect...

* fix curve_min speed

* Revert "fix curve_min speed"

This reverts commit fcc9c2eb14eb3504abef3e420db93e8882e56f37.

* Reapply "fix curve_min speed"

This reverts commit 2d2bba476c58a7b4e13bac3c3ad0e4694c95515d.

* fix.. auto speed up.. roadlimit

* fix.. atc auto lanechange...

* Update desire_helper.py

* Update cruise.py

* debug atc...

* fix.. waze alert offset..

* fix..

* test atc..

* fix..

* fix.. atc

* atc test..

* fix.. atc

* fix.. atc2

* fix.. atc3

* KerryGold Model.  latsmooth_sec = 0.0

* lat smooth seconds 0.13

* fix comment

* fix.. auto cruise, and speed unit

* change lanemode switching.

* erase mazda lkas button.
2025-06-22 10:51:42 +09:00

71 lines
2.4 KiB
Python

import gc
from tinygrad import Tensor, UOp, Device
from tinygrad.shape.shapetracker import views_to_indexed_uops
from tinygrad.engine.realize import method_cache, get_program
def uops_allocated(): return sum([isinstance(x, UOp) for x in gc.get_objects()])
def print_uops():
for x in gc.get_objects():
if isinstance(x, UOp): print(x)
def start(): pass
def single_tensor(): Tensor([2])
def two_plus_two(): Tensor([2])+Tensor([2])
def two_plus_two_schedule(): (Tensor([2])+Tensor([2])).schedule()
def two_plus_two_kernel():
si = (Tensor([2])+Tensor([2])).schedule()[-1]
get_program(Device.default.renderer, si.ast)
def two_plus_two_linearize():
si = (Tensor([2])+Tensor([2])).schedule()[-1]
get_program(Device.default.renderer, si.ast)
def two_plus_two_realize(): (Tensor([2])+Tensor([2])).realize()
def two_plus_two_item(): (Tensor([2])+Tensor([2])).item()
def gradient_test():
x = Tensor.eye(3, requires_grad=True)
y = Tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()
def realized_eye():
Tensor.eye(3, requires_grad=True).realize()
def realized_list():
Tensor([[2.0,0,-2.0]], requires_grad=True).realize()
def kernel_matmul():
x = Tensor.eye(3, requires_grad=True)
y = Tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x)
si = z.schedule()[-1]
get_program(Device.default.renderer, si.ast)
def realized_matmul():
x = Tensor.eye(3, requires_grad=True)
y = Tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x)
Tensor.realize(z)
def realized_gradient():
x = Tensor.eye(3, requires_grad=True)
y = Tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()
Tensor.realize(x, y, z, x.grad, y.grad)
tests = [start, single_tensor, two_plus_two, two_plus_two_schedule, two_plus_two_kernel,
two_plus_two_linearize, two_plus_two_realize, two_plus_two_item, gradient_test,
realized_eye, realized_list, kernel_matmul, realized_matmul, realized_gradient]
if __name__ == "__main__":
gc.disable()
start_uops = uops_allocated()
# there's a few consts created as default values
print_uops()
for t in tests:
t()
# these caches will keep uops alive
method_cache.clear()
views_to_indexed_uops.cache_clear()
new_uops = uops_allocated()
gc.collect()
new_uops_gc = uops_allocated()
print(f"{t.__name__:30s}: {new_uops:3d} -> {new_uops_gc:3d}")
assert new_uops == start_uops
#print_uops()