carrot/tinygrad_repo/test/external/external_test_onnx_backend.py
carrot 9c7833faf9
KerryGold Model, AGNOS12.4, AdjustLaneChange, EnglighSound (#182)
* Vegetarian Filet o Fish model

* fix.. atc..

* test cluster_speed_limit

* fix.. cluster_speed_limit.. 2

* fix.. clusterspeedlimit3

* cruise speed to roadlimit speed

* fix..

* fix.. eng

* deltaUp/Down for lanechange

* fix.. atc desire...

* fix..

* ff

* ff

* fix..

* fix.. eng

* fix engsound

* Update desire_helper.py

* fix.. connect...

* fix curve_min speed

* Revert "fix curve_min speed"

This reverts commit fcc9c2eb14eb3504abef3e420db93e8882e56f37.

* Reapply "fix curve_min speed"

This reverts commit 2d2bba476c58a7b4e13bac3c3ad0e4694c95515d.

* fix.. auto speed up.. roadlimit

* fix.. atc auto lanechange...

* Update desire_helper.py

* Update cruise.py

* debug atc...

* fix.. waze alert offset..

* fix..

* test atc..

* fix..

* fix.. atc

* atc test..

* fix.. atc

* fix.. atc2

* fix.. atc3

* KerryGold Model.  latsmooth_sec = 0.0

* lat smooth seconds 0.13

* fix comment

* fix.. auto cruise, and speed unit

* change lanemode switching.

* erase mazda lkas button.
2025-06-22 10:51:42 +09:00

225 lines
9.6 KiB
Python

import tempfile, unittest
from typing import Any, Tuple
from onnx.backend.base import Backend, BackendRep
import onnx.backend.test
import numpy as np
from tinygrad import Tensor, Device, dtypes
from tinygrad.helpers import getenv, OSX
from tinygrad.device import is_dtype_supported
# pip3 install tabulate
pytest_plugins = 'onnx.backend.test.report',
from tinygrad.frontend.onnx import OnnxRunner, onnx_load
class TinygradModel(BackendRep):
def __init__(self, run_onnx, input_names):
super().__init__()
self.fxn = run_onnx
self.input_names = input_names
def run(self, inputs: Any, **kwargs: Any) -> Tuple[Any, ...]:
real_inputs = dict(zip(self.input_names, inputs))
ret = self.fxn(real_inputs, debug=2)
return tuple(x.numpy() if isinstance(x, Tensor) else [i.numpy() for i in x] if isinstance(x, list) else np.array(x) for x in ret.values())
class TinygradBackend(Backend):
@classmethod
def prepare(cls, model: onnx.ModelProto, device):
input_all = [x.name for x in model.graph.input]
input_initializer = [x.name for x in model.graph.initializer]
net_feed_input = [x for x in input_all if x not in input_initializer]
print("prepare", cls, device, net_feed_input)
with tempfile.NamedTemporaryFile(suffix='.onnx') as f:
onnx.save(model, f.name)
f.flush()
new_model = onnx_load(f.name)
run_onnx = OnnxRunner(new_model)
return TinygradModel(run_onnx, net_feed_input)
@classmethod
def supports_device(cls, device: str) -> bool:
# NOTE: this is onnx CPU
return device == "CPU"
backend_test = onnx.backend.test.BackendTest(TinygradBackend, __name__)
# BUG: buggy onnx tests
backend_test.exclude('test_adam_multiple_cpu')
# BUG: ORT fails these with runtime error
backend_test.exclude('test_PReLU_1d_multiparam_cpu')
backend_test.exclude('test_PReLU_2d_multiparam_cpu')
backend_test.exclude('test_PReLU_3d_multiparam_cpu')
# BUG: we don't match ORT here due to some div inaccuracy with floats
backend_test.exclude('test_dynamicquantizelinear_cpu')
backend_test.exclude('test_dynamicquantizelinear_expanded_cpu')
# BUG: ORT fails these with numerical error but we match ORT numerically
# tested in external_test_onnx_ops.py::TestMainOnnxOps.test_qlinearmatmul_2D_int8_float16
backend_test.exclude('test_qlinearmatmul_2D_int8_float16_cpu')
# tested in external_test_onnx_ops.py::TestMainOnnxOps.test_qlinearmatmul_3D_int8_float16
backend_test.exclude('test_qlinearmatmul_3D_int8_float16_cpu')
# tested in external_test_onnx_ops.py::TestMainOnnxOps.test_qlinearmatmul_2D_int8_float32
backend_test.exclude('test_qlinearmatmul_2D_int8_float32_cpu')
# tested in external_test_onnx_ops.py::TestMainOnnxOps.test_qlinearmatmul_3D_int8_float32
backend_test.exclude('test_qlinearmatmul_3D_int8_float32_cpu')
# tested in external_test_onnx_ops.py::TestMainOnnxOps.test_maxunpool_export_with_output_shape
backend_test.exclude('test_maxunpool_export_with_output_shape_cpu')
# tested in external_test_onnx_ops.py::TestMainOnnxOps.test_averagepool_3d_dilations_large_count_include_pad_is_1_ceil_mode_is_True
backend_test.exclude('test_averagepool_3d_dilations_large_count_include_pad_is_1_ceil_mode_is_True_cpu')
# about different dtypes
if not is_dtype_supported(dtypes.float64):
backend_test.exclude('float64')
backend_test.exclude('DOUBLE')
# these have float64 inputs
backend_test.exclude('test_eyelike_with_dtype_cpu')
backend_test.exclude('test_reduce_log_sum_exp*')
backend_test.exclude('test_operator_add*')
backend_test.exclude('test_einsum_*')
backend_test.exclude('test_cumsum_*')
if not is_dtype_supported(dtypes.float16):
backend_test.exclude('float16')
backend_test.exclude('FLOAT16')
# dtype cast
backend_test.exclude('STRING')
backend_test.exclude('FLOAT8')
backend_test.exclude('INT4')
backend_test.exclude('UINT4')
backend_test.exclude('BFLOAT16') # not supported in numpy
# TODO: fix these with true onnx float16
backend_test.exclude('to_FLOAT16')
backend_test.exclude('cast_no_saturate')
backend_test.exclude('test_dequantizelinear_e4m3fn_float16_cpu')
backend_test.exclude('test_max_float16_cpu')
backend_test.exclude('test_min_float16_cpu')
backend_test.exclude('test_mod_mixed_sign_float16_cpu')
backend_test.exclude('test_dequantizelinear_int4_cpu')
backend_test.exclude('test_dequantizelinear_uint4_cpu')
backend_test.exclude('test_quantizelinear_int4_cpu')
backend_test.exclude('test_quantizelinear_uint4_cpu')
# no support for FLOAT8
backend_test.exclude('test_quantizelinear_e4m3fn_cpu')
backend_test.exclude('test_quantizelinear_e5m2_cpu')
backend_test.exclude('test_quantizelinear_e4m3fn_cpu')
backend_test.exclude('test_quantizelinear_e5m2_cpu')
backend_test.exclude('test_dequantizelinear_e4m3fn_cpu')
backend_test.exclude('test_dequantizelinear_e4m3fn_zero_point_cpu')
backend_test.exclude('test_dequantizelinear_e5m2_cpu')
# we don't support indexes
backend_test.exclude('test_nonzero_*')
# no support for int pow
backend_test.exclude('test_pow_types_int32_int32_cpu')
backend_test.exclude('test_pow_types_int64_int64_cpu')
# no boolean ops (2d, 3d, 4d)
backend_test.exclude('test_bitshift_*')
# no string ops
backend_test.exclude('string')
backend_test.exclude('test_strnorm_*')
backend_test.exclude('test_regex_*')
# no rnn
backend_test.exclude('test_gru_*')
backend_test.exclude('test_rnn_*')
backend_test.exclude('test_lstm_*')
backend_test.exclude('test_simple_rnn_*')
# no control flow
# control flow uses AttributeProto.GRAPH
backend_test.exclude('test_if_*')
backend_test.exclude('test_loop*')
backend_test.exclude('test_range_float_type_positive_delta_expanded_cpu') # requires loop
backend_test.exclude('test_affine_grid_2d_align_corners_expanded_cpu')
backend_test.exclude('test_affine_grid_2d_expanded_cpu')
backend_test.exclude('test_affine_grid_3d_align_corners_expanded_cpu')
backend_test.exclude('test_affine_grid_3d_expanded_cpu')
backend_test.exclude('test_range_int32_type_negative_delta_expanded_cpu')
# unsupported (strange) ops
backend_test.exclude('test_blackmanwindow_*')
backend_test.exclude('test_bernoulli_*')
backend_test.exclude('test_det_*')
backend_test.exclude('test_col2im_*')
backend_test.exclude('test_hammingwindow_*')
backend_test.exclude('test_hannwindow_*')
backend_test.exclude('test_hardmax_*')
backend_test.exclude('test_gridsample_*')
backend_test.exclude('test_dft_*')
backend_test.exclude('test_einsum_batch_diagonal_cpu*') # TODO: equation = '...ii ->...i'
backend_test.exclude('test_einsum_inner_prod_cpu*') # TODO: equation = 'i,i'
backend_test.exclude('test_unique_*')
backend_test.exclude('test_sequence_*')
backend_test.exclude('test_nonmaxsuppression_*')
backend_test.exclude('test_reversesequence_*')
backend_test.exclude('test_roialign_*')
backend_test.exclude('test_tfidfvectorizer_*')
backend_test.exclude('test_stft_*')
backend_test.exclude('test_melweightmatrix_*')
# more strange ops
backend_test.exclude('test_basic_deform_conv_*')
backend_test.exclude('test_deform_conv_*')
backend_test.exclude('test_lppool_*')
backend_test.exclude('test_scan_*')
backend_test.exclude('test_split_to_sequence_*')
backend_test.exclude('test_resize_downsample_scales_cubic_*') # unsure how to implement cubic
backend_test.exclude('test_resize_downsample_sizes_cubic_*') # unsure how to implement cubic
backend_test.exclude('test_resize_upsample_scales_cubic_*') # unsure how to implement cubic
backend_test.exclude('test_resize_upsample_sizes_cubic_*') # unsure how to implement cubic
backend_test.exclude('test_ai_onnx_ml_tree_ensemble_*') # https://github.com/onnx/onnx/blob/main/onnx/reference/ops/aionnxml/op_tree_ensemble.py#L121
# rest of the failing tests
backend_test.exclude('test_resize_tf_crop_and_resize_cpu') # tf_crop_and_resize not implemented
backend_test.exclude('test_resize_tf_crop_and_resize_axes_2_3_cpu') # tf_crop_and_resize not implemented
backend_test.exclude('test_resize_tf_crop_and_resize_axes_3_2_cpu') # tf_crop_and_resize not implemented
backend_test.exclude('test_resize_tf_crop_and_resize_extrapolation_value_cpu') # tf_crop_and_resize value not implemented
backend_test.exclude('test_resize_downsample_scales_linear_antialias_cpu') # antialias not implemented
backend_test.exclude('test_resize_downsample_sizes_linear_antialias_cpu') # antialias not implemented
backend_test.exclude('test_ai_onnx_ml_label_encoder_tensor_value_only_mapping_cpu') # bad data type string
backend_test.exclude('test_ai_onnx_ml_label_encoder_tensor_mapping_cpu') # bad data type string
backend_test.exclude('test_scatternd_min_cpu') # min not yet supported
backend_test.exclude('test_scatternd_max_cpu') # max not yet supported
if Device.DEFAULT in ['GPU', 'METAL']:
backend_test.exclude('test_resize_upsample_sizes_nearest_axes_2_3_cpu')
backend_test.exclude('test_resize_upsample_sizes_nearest_axes_3_2_cpu')
backend_test.exclude('test_resize_upsample_sizes_nearest_cpu')
if Device.DEFAULT == "METAL" or (OSX and Device.DEFAULT == "GPU"):
# numerical inaccuracy
backend_test.exclude('test_mish_cpu')
backend_test.exclude('test_mish_expanded_cpu')
# disable model tests for now since they are slow
if not getenv("MODELTESTS"):
for x in backend_test.test_suite:
if 'OnnxBackendRealModelTest' in str(type(x)):
backend_test.exclude(str(x).split(" ")[0])
else:
# model tests all pass!
backend_test.include('test_resnet50')
backend_test.include('test_inception_v1')
backend_test.include('test_inception_v2')
backend_test.include('test_densenet121')
backend_test.include('test_shufflenet')
backend_test.include('test_squeezenet')
backend_test.include('test_bvlc_alexnet')
backend_test.include('test_zfnet512')
backend_test.include('test_vgg19')
globals().update(backend_test.enable_report().test_cases)
if __name__ == '__main__':
unittest.main()