
* Vegetarian Filet o Fish model * fix.. atc.. * test cluster_speed_limit * fix.. cluster_speed_limit.. 2 * fix.. clusterspeedlimit3 * cruise speed to roadlimit speed * fix.. * fix.. eng * deltaUp/Down for lanechange * fix.. atc desire... * fix.. * ff * ff * fix.. * fix.. eng * fix engsound * Update desire_helper.py * fix.. connect... * fix curve_min speed * Revert "fix curve_min speed" This reverts commit fcc9c2eb14eb3504abef3e420db93e8882e56f37. * Reapply "fix curve_min speed" This reverts commit 2d2bba476c58a7b4e13bac3c3ad0e4694c95515d. * fix.. auto speed up.. roadlimit * fix.. atc auto lanechange... * Update desire_helper.py * Update cruise.py * debug atc... * fix.. waze alert offset.. * fix.. * test atc.. * fix.. * fix.. atc * atc test.. * fix.. atc * fix.. atc2 * fix.. atc3 * KerryGold Model. latsmooth_sec = 0.0 * lat smooth seconds 0.13 * fix comment * fix.. auto cruise, and speed unit * change lanemode switching. * erase mazda lkas button.
52 lines
1.5 KiB
Python
52 lines
1.5 KiB
Python
#!/usr/bin/env python
|
|
import os
|
|
import unittest
|
|
import numpy as np
|
|
if 'IMAGE' not in os.environ:
|
|
os.environ['IMAGE'] = '2'
|
|
os.environ['GPU'] = '1'
|
|
os.environ['OPT'] = '2'
|
|
from tinygrad.tensor import Tensor
|
|
from tinygrad.nn import Conv2d
|
|
|
|
class TestImage(unittest.TestCase):
|
|
def test_create_image(self):
|
|
t = Tensor.ones(128, 128, 1)
|
|
t = t.reshape(128, 32, 4) + 3
|
|
t.realize()
|
|
np.testing.assert_array_equal(t.numpy(), np.ones((128,32,4))*4)
|
|
|
|
def test_sum_image(self):
|
|
t1 = Tensor.ones(16, 16, 1).reshape(16, 4, 4) + 3
|
|
t1.realize()
|
|
t1 = t1.sum()
|
|
t1.realize()
|
|
assert t1.numpy() == 16*4*4*4, f"got {t1.numpy()}"
|
|
|
|
def test_add_image(self):
|
|
t1 = Tensor.ones(16, 16, 1).reshape(16, 4, 4) + 3
|
|
t2 = Tensor.ones(16, 16, 1).reshape(16, 4, 4) + 4
|
|
t1.realize()
|
|
t2.realize()
|
|
t3 = t1 + t2
|
|
t3.realize()
|
|
np.testing.assert_array_equal(t3.numpy(), np.ones((16,4,4))*9)
|
|
|
|
def test_padded_conv(self):
|
|
bs, in_chans, out_chans = 1,12,32
|
|
tiny_conv = Conv2d(in_chans, out_chans, 3, bias=None, padding=1)
|
|
tiny_dat = Tensor.ones(bs, 12, 64, 128)
|
|
tiny_conv(tiny_dat).realize()
|
|
|
|
def test_op_conv(self):
|
|
bs, in_chans, out_chans = 1,12,32
|
|
tiny_conv = Conv2d(in_chans, out_chans, 3, bias=None, padding=1)
|
|
tiny_dconv = Conv2d(out_chans, out_chans, 1, bias=None, padding=0)
|
|
tiny_dat = Tensor.ones(bs, 12, 64, 128)
|
|
p2 = tiny_conv(tiny_dat).relu()
|
|
p2 = tiny_dconv(p2)
|
|
p2.realize()
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|