carrot/tinygrad_repo/test/external/external_benchmark_schedule.py
carrot 9c7833faf9
KerryGold Model, AGNOS12.4, AdjustLaneChange, EnglighSound (#182)
* Vegetarian Filet o Fish model

* fix.. atc..

* test cluster_speed_limit

* fix.. cluster_speed_limit.. 2

* fix.. clusterspeedlimit3

* cruise speed to roadlimit speed

* fix..

* fix.. eng

* deltaUp/Down for lanechange

* fix.. atc desire...

* fix..

* ff

* ff

* fix..

* fix.. eng

* fix engsound

* Update desire_helper.py

* fix.. connect...

* fix curve_min speed

* Revert "fix curve_min speed"

This reverts commit fcc9c2eb14eb3504abef3e420db93e8882e56f37.

* Reapply "fix curve_min speed"

This reverts commit 2d2bba476c58a7b4e13bac3c3ad0e4694c95515d.

* fix.. auto speed up.. roadlimit

* fix.. atc auto lanechange...

* Update desire_helper.py

* Update cruise.py

* debug atc...

* fix.. waze alert offset..

* fix..

* test atc..

* fix..

* fix.. atc

* atc test..

* fix.. atc

* fix.. atc2

* fix.. atc3

* KerryGold Model.  latsmooth_sec = 0.0

* lat smooth seconds 0.13

* fix comment

* fix.. auto cruise, and speed unit

* change lanemode switching.

* erase mazda lkas button.
2025-06-22 10:51:42 +09:00

60 lines
2.5 KiB
Python

from typing import List
from extra.models.resnet import ResNet50
from tinygrad import Tensor, nn
from tinygrad.helpers import Profiling, Timing, getenv, BEAM, NOOPT, DEBUG, Context, ansilen
from tinygrad.uop.ops import Ops
from tinygrad.codegen.kernel import Kernel
from tinygrad.codegen.heuristic import hand_coded_optimizations
from tinygrad.codegen import get_rewrites_for_renderer, apply_rewrites, rewrites_for_linearizer
from tinygrad.engine.search import beam_search, bufs_from_lin
if __name__ == "__main__":
mdl = ResNet50()
for p in nn.state.get_parameters(mdl): p.replace(Tensor.empty(p.shape))
img = Tensor.empty(64, 3, 224, 224)
PROFILE = getenv("PYPROFILE", 0)
FORWARD_ONLY = getenv("FORWARD_ONLY", 0)
SCHEDULE_ONLY = getenv("SCHEDULE_ONLY", 0)
LINEARIZE = bool(getenv("LINEARIZE", 1))
with Timing("all "):
with Timing("***** model tensor in "):
out = mdl(img)
if not FORWARD_ONLY:
with Timing("***** model schedule in "):
with Profiling(PROFILE >= 3):
sched = out.schedule()
if not SCHEDULE_ONLY:
asts = list({x.ast.key:x.ast for x in sched if x.ast.op is Ops.SINK}.values())
if (restrict_kernel := getenv("RESTRICT_KERNEL", -1)) != -1: asts = asts[restrict_kernel:restrict_kernel+1]
kernels: List[Kernel] = []
with Timing(f"***** model opts({len(asts):2d}) in "):
with Profiling(PROFILE >= 3):
for ast in asts:
k = Kernel(ast)
if BEAM:
with Context(DEBUG=max(2, DEBUG.value)): k = beam_search(k, bufs_from_lin(k), BEAM.value)
elif NOOPT: pass
else: k.apply_opts(hand_coded_optimizations(k))
kernels.append(k)
with Timing("***** model prep in "):
kernels = [(k, k.get_optimized_ast(), get_rewrites_for_renderer(k.opts, linearizer=False)) for k in kernels]
with Profiling(PROFILE, fn="/tmp/rewrite.prof"):
with Timing("***** model rewrite in "):
rewritten_uops = []
for i,(k,u,rewrites) in enumerate(kernels):
with Timing(f"rewrite {i:2d} {k.name}{' '*(50-ansilen(k.name))}", enabled=getenv("VERBOSE", 0)):
rewritten_uops.append(apply_rewrites(u, rewrites))
if LINEARIZE:
with Timing("***** model linearize in "):
uops_line = []
for u in rewritten_uops:
uops_line.append(apply_rewrites(u, rewrites_for_linearizer))
print(sum(len(u.arg.lst) for u in uops_line))