carrot efee1712aa
KerryGoldModel, AGNOS12.3, ButtonMode3, autoDetectLFA2, (#181)
* fix.. speed_limit error...

* draw tpms settings.

* fix.. traffic light stopping only..

* fix.. waze cam

* fix.. waze...

* add setting (Enable comma connect )

* auto detect LFA2

* fix.. cruisespeed1

* vff2 driving model.

* fix..

* agnos 12.3

* fix..

* ff

* ff

* test

* ff

* fix.. drawTurnInfo..

* Update drive_helpers.py

* fix..

support eng  voice

eng sounds

fix settings... english

fix.. mph..

fix.. roadlimit speed bug..

* new vff model.. 250608

* fix soundd..

* fix safe exit speed..

* fix.. sounds.

* fix.. radar timeStep..

* KerryGold model

* Update drive_helpers.py

* fix.. model.

* fix..

* fix..

* Revert "fix.."

This reverts commit b09ec459afb855c533d47fd7e8a1a6b1a09466e7.

* Revert "fix.."

This reverts commit 290bec6b83a4554ca232d531a911edccf94a2156.

* fix esim

* add more acc table. 10kph

* kg update..

* fix cruisebutton mode3

* test atc..cond.

* fix.. canfd

* fix.. angle control limit
2025-06-13 15:59:36 +09:00

67 lines
2.2 KiB
Python

import numpy as np
import math
import random
np.set_printoptions(suppress=True)
from copy import deepcopy
from tinygrad.helpers import getenv, colored
from tinygrad.tensor import Tensor
from tinygrad.nn.state import get_parameters, get_state_dict, safe_save, safe_load, load_state_dict
from tinygrad.engine.search import bufs_from_lin, actions, get_kernel_actions
from tinygrad.codegen.heuristic import hand_coded_optimizations
from extra.optimization.helpers import load_worlds, ast_str_to_lin, lin_to_feats, time_linearizer
from extra.optimization.extract_policynet import PolicyNet
from extra.optimization.pretrain_valuenet import ValueNet
VALUE = getenv("VALUE")
if __name__ == "__main__":
if VALUE:
net = ValueNet()
load_state_dict(net, safe_load("/tmp/valuenet.safetensors"))
else:
net = PolicyNet()
load_state_dict(net, safe_load("/tmp/policynet.safetensors"))
ast_strs = load_worlds()
# real randomness
random.seed()
random.shuffle(ast_strs)
wins = 0
for ep_num,ast_str in enumerate(ast_strs):
print("\nEPISODE", ep_num, f"win {wins*100/max(1,ep_num):.2f}%")
lin = ast_str_to_lin(ast_str)
rawbufs = bufs_from_lin(lin)
linhc = deepcopy(lin)
linhc.applied_opts(hand_coded_optimizations(linhc))
tmhc = time_linearizer(linhc, rawbufs)
print(f"{tmhc*1e6:10.2f} HC ", linhc.colored_shape())
pred_time = float('nan')
tm = float('inf')
while 1:
if VALUE:
acts,feats = [], []
for k,v in get_kernel_actions(lin).items():
acts.append(k)
feats.append(lin_to_feats(v))
preds = net(Tensor(feats))
pred_time = math.exp(preds.numpy().min())
act = acts[preds.numpy().argmin()]
else:
probs = net(Tensor([lin_to_feats(lin)]))
dist = probs.exp().numpy()
act = dist.argmax()
if act == 0: break
try:
lin.apply_opt(actions[act-1])
except Exception:
print("FAILED")
break
tm = time_linearizer(lin, rawbufs)
print(f"{tm*1e6:10.2f} {pred_time*1e6:10.2f}", lin.colored_shape())
print(f"{colored('BEAT', 'green') if tm < tmhc else colored('lost', 'red')} hand coded {tmhc/tm:5.2f}x")
wins += int(tm < tmhc)