carrot efee1712aa
KerryGoldModel, AGNOS12.3, ButtonMode3, autoDetectLFA2, (#181)
* fix.. speed_limit error...

* draw tpms settings.

* fix.. traffic light stopping only..

* fix.. waze cam

* fix.. waze...

* add setting (Enable comma connect )

* auto detect LFA2

* fix.. cruisespeed1

* vff2 driving model.

* fix..

* agnos 12.3

* fix..

* ff

* ff

* test

* ff

* fix.. drawTurnInfo..

* Update drive_helpers.py

* fix..

support eng  voice

eng sounds

fix settings... english

fix.. mph..

fix.. roadlimit speed bug..

* new vff model.. 250608

* fix soundd..

* fix safe exit speed..

* fix.. sounds.

* fix.. radar timeStep..

* KerryGold model

* Update drive_helpers.py

* fix.. model.

* fix..

* fix..

* Revert "fix.."

This reverts commit b09ec459afb855c533d47fd7e8a1a6b1a09466e7.

* Revert "fix.."

This reverts commit 290bec6b83a4554ca232d531a911edccf94a2156.

* fix esim

* add more acc table. 10kph

* kg update..

* fix cruisebutton mode3

* test atc..cond.

* fix.. canfd

* fix.. angle control limit
2025-06-13 15:59:36 +09:00

97 lines
4.0 KiB
Python

# kernel8_batched_gmem.s from https://seb-v.github.io/optimization/update/2025/01/20/Fast-GPU-Matrix-multiplication.html
import pathlib
import numpy as np
from dataclasses import replace
from tinygrad import Tensor, Device, Context
from tinygrad.helpers import getenv
from tinygrad.codegen.kernel import Kernel, Opt, OptOps
from tinygrad.engine.realize import CompiledRunner, ExecItem
from tinygrad.uop.ops import graph_rewrite, PatternMatcher, UPat, Ops, UOp
# TODO: on METAL for `DEBUG=4 python3 extra/gemm/amd_matmul.py`
# * fix load grouping (like float4). idk why it's not working, need new devectorizer (this is a Monday project)
# * DONE - remove extra barrier
# * DONE (moved Ops.ADD) - fix load order to be in order (the +0 one is last!)
# * explore async (fast) global load -> local store
# * why is TC=3 broken for 4096x4096?
# * write syntactic sugar for these local additions + use it in tensor core kernel.py
N = 4096
LN = 16
run_count = 5
from tinygrad.shape.shapetracker import ShapeTracker, View
def transform_load(ctx:tuple[Kernel, set[UOp]], x:UOp):
if x.src[0].op is not Ops.DEFINE_GLOBAL: return None
if x in ctx[1]: return None
print(ctx[0].colored_shape())
ctx[1].add(x)
input_st: ShapeTracker = x.src[1].arg
#strides = input_st.real_strides()
#strides = (0,0)+strides[2:]
if input_st.real_strides()[2] == 0:
perm = (0,1,5,3,4,2)
strides = (0,0,LN*4,4,0,0,1,0)
elif input_st.real_strides()[3] == 0:
perm = (0,1,2,5,4,3)
strides = (0,0,LN*4,4,0,0,0,1)
else:
return None
if len(input_st.shape) == 8:
local_st = ShapeTracker(views=(View.create((1,1,LN,LN,1,1,4,4), strides),))
perm = perm + (6,7)
else:
local_st = ShapeTracker(views=(View.create((1,1,LN,LN,1,1)),))
#local_st = ShapeTracker(views=(View.create((1,1,LN,LN,1,1)),))
load_st = local_st.permute(perm)
input_st = input_st.permute(perm)
lcl = UOp(Ops.DEFINE_LOCAL, x.dtype.ptr(local_st.real_size(), local=True), (), f"temp{x.src[0].arg}")
global_load = x.replace(src=(x.src[0], input_st.to_uop()))
ret = UOp(Ops.STORE, src=(lcl, local_st.to_uop(), global_load))
return UOp(Ops.LOAD, x.dtype, src=(lcl, load_st.to_uop(), ret))
local_loads_pm = PatternMatcher([
(UPat(Ops.LOAD, name="x"), transform_load),
])
def ast_transform(k, ast):
#return ast
ast = graph_rewrite(ast, local_loads_pm, ctx=(k, set()))
#ast = ast.replace(arg=replace(ast.arg, upcasted=0))
print(ast)
return ast
if __name__ == "__main__":
rng = np.random.default_rng()
a = Tensor(na:=rng.random((4096, 4096), dtype=np.float32)).realize()
b = Tensor(nb:=rng.random((4096, 4096), dtype=np.float32)).realize()
c = a @ b
si = c.schedule()[-1]
k = Kernel(si.ast, opts=Device[Device.DEFAULT].renderer)
#opts = [Opt(op=OptOps.LOCAL, axis=1, arg=16),
# Opt(op=OptOps.LOCAL, axis=0, arg=8),
# Opt(op=OptOps.UPCAST, axis=2, arg=4),
# Opt(op=OptOps.UPCAST, axis=1, arg=4),
# Opt(op=OptOps.UPCAST, axis=0, arg=2)]
#opts = [Opt(op=OptOps.UPCAST, axis=1, arg=4),
# Opt(op=OptOps.UPCAST, axis=0, arg=4),
# Opt(op=OptOps.LOCAL, axis=1, arg=8),
# Opt(op=OptOps.LOCAL, axis=0, arg=4)]
opts = [Opt(op=OptOps.UNROLL, axis=0, arg=LN),
#Opt(op=OptOps.UPCAST, axis=0, arg=4),
#Opt(op=OptOps.UPCAST, axis=1, arg=4),
Opt(op=OptOps.LOCAL, axis=1, arg=LN),
Opt(op=OptOps.LOCAL, axis=0, arg=LN)]
k.apply_opts(opts)
prg = k.to_program(ast_transform=ast_transform)
if getenv("FAST", 1) and Device.DEFAULT == "AMD":
#src = (pathlib.Path(__file__).parent / "fp32_sgemm_amd" / "src" / "kernel8_batched_gmem.s").read_text()
src = (pathlib.Path(__file__).parent / "kernel8_batched_gmem.s").read_text()
prg = replace(prg, src=src, global_size=[N//128, N//128, 1], local_size=[128, 1, 1])
print(prg.global_size, prg.local_size)
ei = ExecItem(CompiledRunner(prg), [x.ensure_allocated() for x in si.bufs], si.metadata)
with Context(DEBUG=2):
for _ in range(run_count): ei.run(wait=True)
nc = c.numpy()
np.testing.assert_allclose(na@nb, nc, rtol=1e-5)