carrot/tinygrad_repo/examples/test_pkl_imagenet.py
carrot efee1712aa
KerryGoldModel, AGNOS12.3, ButtonMode3, autoDetectLFA2, (#181)
* fix.. speed_limit error...

* draw tpms settings.

* fix.. traffic light stopping only..

* fix.. waze cam

* fix.. waze...

* add setting (Enable comma connect )

* auto detect LFA2

* fix.. cruisespeed1

* vff2 driving model.

* fix..

* agnos 12.3

* fix..

* ff

* ff

* test

* ff

* fix.. drawTurnInfo..

* Update drive_helpers.py

* fix..

support eng  voice

eng sounds

fix settings... english

fix.. mph..

fix.. roadlimit speed bug..

* new vff model.. 250608

* fix soundd..

* fix safe exit speed..

* fix.. sounds.

* fix.. radar timeStep..

* KerryGold model

* Update drive_helpers.py

* fix.. model.

* fix..

* fix..

* Revert "fix.."

This reverts commit b09ec459afb855c533d47fd7e8a1a6b1a09466e7.

* Revert "fix.."

This reverts commit 290bec6b83a4554ca232d531a911edccf94a2156.

* fix esim

* add more acc table. 10kph

* kg update..

* fix cruisebutton mode3

* test atc..cond.

* fix.. canfd

* fix.. angle control limit
2025-06-13 15:59:36 +09:00

20 lines
761 B
Python

import sys, pickle
from tinygrad import GlobalCounters
from tinygrad.helpers import fetch, getenv
from examples.test_onnx_imagenet import imagenet_dataloader
if __name__ == "__main__":
with open(fetch(sys.argv[1]), "rb") as f:
run_onnx_jit = pickle.load(f)
input_name = run_onnx_jit.captured.expected_names[0]
device = run_onnx_jit.captured.expected_st_vars_dtype_device[0][-1]
print(f"input goes into {input_name=} on {device=}")
hit = 0
for i,(img,y) in enumerate(imagenet_dataloader(cnt=getenv("CNT", 100))):
GlobalCounters.reset()
p = run_onnx_jit(**{input_name:img.to(device)})
assert p.shape == (1,1000)
t = p.to('cpu').argmax().item()
hit += y==t
print(f"target: {y:3d} pred: {t:3d} acc: {hit/(i+1)*100:.2f}%")