carrot 9c7833faf9
KerryGold Model, AGNOS12.4, AdjustLaneChange, EnglighSound (#182)
* Vegetarian Filet o Fish model

* fix.. atc..

* test cluster_speed_limit

* fix.. cluster_speed_limit.. 2

* fix.. clusterspeedlimit3

* cruise speed to roadlimit speed

* fix..

* fix.. eng

* deltaUp/Down for lanechange

* fix.. atc desire...

* fix..

* ff

* ff

* fix..

* fix.. eng

* fix engsound

* Update desire_helper.py

* fix.. connect...

* fix curve_min speed

* Revert "fix curve_min speed"

This reverts commit fcc9c2eb14eb3504abef3e420db93e8882e56f37.

* Reapply "fix curve_min speed"

This reverts commit 2d2bba476c58a7b4e13bac3c3ad0e4694c95515d.

* fix.. auto speed up.. roadlimit

* fix.. atc auto lanechange...

* Update desire_helper.py

* Update cruise.py

* debug atc...

* fix.. waze alert offset..

* fix..

* test atc..

* fix..

* fix.. atc

* atc test..

* fix.. atc

* fix.. atc2

* fix.. atc3

* KerryGold Model.  latsmooth_sec = 0.0

* lat smooth seconds 0.13

* fix comment

* fix.. auto cruise, and speed unit

* change lanemode switching.

* erase mazda lkas button.
2025-06-22 10:51:42 +09:00

249 lines
11 KiB
Python

#!/usr/bin/env python3
import os, argparse, contextlib
from typing import Optional, Union
with contextlib.suppress(ImportError): import tiktoken
from tinygrad import Tensor, TinyJit, Device, GlobalCounters, Variable, dtypes
from tinygrad.uop.ops import UOp
from tinygrad.helpers import Timing, DEBUG, JIT, getenv, fetch, colored, trange
from tinygrad.nn import Embedding, Linear, LayerNorm
from tinygrad.nn.state import gguf_load, torch_load, load_state_dict, get_state_dict
from extra.bench_log import BenchEvent, WallTimeEvent
MAX_CONTEXT = getenv("MAX_CONTEXT", 128)
HALF = getenv("HALF")
class Attention:
def __init__(self, dim, n_heads):
self.c_attn = Linear(dim, 3*dim, bias=True)
self.c_proj = Linear(dim, dim, bias=True)
self.n_heads = n_heads
self.dim = dim
self.head_dim = dim // n_heads
def __call__(self, x:Tensor, start_pos:Variable, mask:Optional[Tensor]) -> Tensor:
if mask is not None or start_pos.val == 0:
# no symbolic shape qkv when consuming prompts
start_pos = start_pos.val
if HALF: x = x.half()
xqkv = self.c_attn(x)
xq, xk, xv = [xqkv.shrink((None, None, (i*self.dim, (i+1)*self.dim))).reshape(None, None, self.n_heads, self.head_dim) for i in range(3)]
bsz, seqlen, _, _ = xq.shape
# create kv cache
if not hasattr(self, "cache_kv"):
self.cache_kv = Tensor.zeros(2, bsz, MAX_CONTEXT, self.n_heads, self.head_dim, dtype=x.dtype).contiguous().realize()
# update the cache
self.cache_kv.shrink((None, None,(start_pos,start_pos+seqlen),None,None)).assign(Tensor.stack(xk, xv)).realize()
if start_pos > 0:
keys = self.cache_kv[0].shrink((None, (0, start_pos+seqlen), None, None))
values = self.cache_kv[1].shrink((None, (0, start_pos+seqlen), None, None))
else:
keys = xk
values = xv
xq, keys, values = xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2)
return self.c_proj(xq.scaled_dot_product_attention(keys, values, mask).transpose(1, 2).reshape(bsz, seqlen, self.dim))
class FeedForward:
def __init__(self, dim, hidden_dim):
self.c_fc = Linear(dim, hidden_dim, bias=True)
self.c_proj = Linear(hidden_dim, dim, bias=True)
def __call__(self, x:Tensor) -> Tensor:
return self.c_proj(self.c_fc(x).gelu())
class TransformerBlock:
def __init__(self, dim, n_heads, norm_eps):
self.attn = Attention(dim, n_heads)
self.mlp = FeedForward(dim, 4*dim)
self.ln_1 = LayerNorm(dim, norm_eps)
self.ln_2 = LayerNorm(dim, norm_eps)
def __call__(self, x:Tensor, start_pos:Variable, mask:Optional[Tensor]):
h = x + self.attn(self.ln_1(x), start_pos, mask).float()
return (h + self.mlp(self.ln_2(h)))
class Transformer:
def __init__(self, dim, n_heads, n_layers, norm_eps, vocab_size, max_seq_len=1024):
self.vocab_size = vocab_size
self.wte = Embedding(vocab_size, dim)
self.wpe = Embedding(max_seq_len, dim)
self.h = [TransformerBlock(dim, n_heads, norm_eps) for _ in range(n_layers)]
self.ln_f = LayerNorm(dim, norm_eps)
self.lm_head = Linear(dim, vocab_size, bias=False)
self.forward_jit = TinyJit(self.forward)
def forward(self, tokens:Union[Tensor,UOp], start_pos:Variable, temperature:float=0.0):
if not hasattr(self, 'allpos'): self.allpos = Tensor.arange(0, MAX_CONTEXT).reshape(1, -1).realize()
if isinstance(tokens, UOp):
seqlen = 1
tok_emb = self.wte.weight.shrink(((tokens, tokens+1), None))
else:
seqlen = tokens.shape[1]
tok_emb = self.wte(tokens)
# not symbolic when consuming the prompt
selected_pos = (0, seqlen) if start_pos.val == 0 else (start_pos, start_pos+1)
pos_emb = self.wpe(self.allpos.shrink((None, selected_pos)))
h = tok_emb + pos_emb
if HALF: h = h.half()
mask = Tensor.full((1, 1, seqlen, start_pos.val+seqlen), float("-inf"), dtype=h.dtype).triu(start_pos.val+1) if seqlen > 1 else None
for hi in self.h: h = hi(h, start_pos, mask)
logits = self.lm_head(self.ln_f(h))
if logits.shape[1] == 0:
# special case for empty prompt
logits = Tensor.ones((logits.shape[0], self.vocab_size), dtype=logits.dtype, device=logits.device)
else:
logits = logits[:, -1, :]
if temperature < 1e-6:
ret = logits.argmax(-1)
else:
ret = (logits / temperature).softmax().multinomial()
return ret.flatten().realize()
def __call__(self, tokens:Union[Tensor,UOp], start_pos:Variable, temperature:float=0.0) -> Tensor:
forward = (self.forward_jit if JIT and (isinstance(tokens, UOp) or tokens.shape[1] == 1) else self.forward)
return forward(tokens, start_pos, temperature)
VOCAB_SIZE = 50257
MODEL_PARAMS = {
'gpt2': dict(n_layers=12, n_heads=12, dim=768, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 124M params
'gpt2-medium': dict(n_layers=24, n_heads=16, dim=1024, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 350M params
'gpt2-large': dict(n_layers=36, n_heads=20, dim=1280, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 774M params
'gpt2-xl': dict(n_layers=48, n_heads=25, dim=1600, norm_eps=1e-5, vocab_size=VOCAB_SIZE), # 1558M params
}
class GPT2:
@staticmethod
def build(model_size="gpt2"):
tokenizer = tiktoken.get_encoding("gpt2")
model = Transformer(**MODEL_PARAMS[model_size])
weights = torch_load(fetch(f'https://huggingface.co/{model_size}/resolve/main/pytorch_model.bin'))
# special treatment for the Conv1D weights we need to transpose
transposed = ('attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight')
for k in weights:
if k.endswith(transposed):
weights[k] = weights[k].T
# lm head and wte are tied
weights['lm_head.weight'] = weights['wte.weight']
with WallTimeEvent(BenchEvent.LOAD_WEIGHTS):
load_state_dict(model, weights)
if HALF:
for l in get_state_dict(model).values():
l.replace(l.half().realize())
return GPT2(model, tokenizer)
@staticmethod
def build_gguf(model_size: str):
q_type = model_size[len("gpt2_gguf_"):].upper()
fn = fetch(f"https://huggingface.co/PrunaAI/gpt2-GGUF-smashed/resolve/main/gpt2.{q_type}.gguf?download=true")
gguf_tensor = Tensor.empty(os.stat(fn).st_size, dtype=dtypes.uint8, device=f"disk:{fn}").to(Device.DEFAULT)
kv_data, state_dict = gguf_load(gguf_tensor)
gpt2_params = {
"dim": kv_data["gpt2.embedding_length"], "n_heads": kv_data["gpt2.attention.head_count"],
"n_layers": kv_data["gpt2.block_count"], "norm_eps": kv_data["gpt2.attention.layer_norm_epsilon"],
"vocab_size": VOCAB_SIZE, "max_seq_len": kv_data["gpt2.context_length"],
}
def _remap_gguf_key(key: str):
replaces = [
("blk.", "h."), (".attn_qkv.bias", ".attn.c_attn.bias"), (".attn_qkv.weight", ".attn.c_attn.weight"),
(".ffn_norm.bias", ".ln_2.bias"), (".ffn_norm.weight", ".ln_2.weight"), (".attn_norm.bias", ".ln_1.bias"),
(".attn_norm.weight", ".ln_1.weight"), (".attn_output.bias", ".attn.c_proj.bias"), (".attn_output.weight", ".attn.c_proj.weight"),
(".ffn_up.bias", ".mlp.c_fc.bias"), (".ffn_up.weight", ".mlp.c_fc.weight"), (".ffn_down.bias", ".mlp.c_proj.bias"),
(".ffn_down.weight", ".mlp.c_proj.weight"), ("token_embd.weight", "wte.weight"), ("output.weight", "lm_head.weight"),
("output_norm.bias", "ln_f.bias"), ("output_norm.weight", "ln_f.weight"), ("position_embd.weight", "wpe.weight"),
]
for ostr, ns in replaces: key = key.replace(ostr, ns)
return key
state_dict = { _remap_gguf_key(k): v for k, v in state_dict.items() }
model = Transformer(**gpt2_params)
with WallTimeEvent(BenchEvent.LOAD_WEIGHTS):
load_state_dict(model, state_dict)
return GPT2(model, tiktoken.get_encoding("gpt2"))
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
def generate(self, prompt:str, max_length:int, temperature:float, timing:bool=False, batch_size:int=1):
prompt_tokens = self.tokenizer.encode(prompt, allowed_special={"<|endoftext|>"})
toks = [prompt_tokens[:] for _ in range(batch_size)]
start_pos = 0
for _ in trange(max_length, disable=(timing==True)):
GlobalCounters.reset()
if timing: print("")
st = GlobalCounters.time_sum_s
with Timing("ran model in ", on_exit=(lambda et: (f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU" if DEBUG>=2 else "")+
f", {GlobalCounters.global_ops*1e-9:.2f} GOPS, {GlobalCounters.global_mem*1e-9:.2f} GB"+
(f", {GlobalCounters.global_mem*1e-9/(GlobalCounters.time_sum_s-st):.2f} GB/s" if DEBUG>=2 else "")) if DEBUG else None, enabled=timing):
with WallTimeEvent(BenchEvent.STEP):
if batch_size == 1 and len(toks[0][start_pos:]) == 1:
tokens = Variable("tokens", 0, VOCAB_SIZE-1).bind(toks[0][start_pos])
else:
tokens = Tensor([x[start_pos:] for x in toks])
tok = self.model(tokens, Variable("start_pos", 1 if start_pos else 0, MAX_CONTEXT-1).bind(start_pos), temperature).tolist()
start_pos = len(toks[0])
for i,t in enumerate(tok): toks[i].append(t)
return [self.tokenizer.decode(x) for x in toks]
# **** main code ****
if __name__ == "__main__":
print(f"using {Device.DEFAULT} backend")
default_prompt = "What is the answer to life, the universe, and everything?"
parser = argparse.ArgumentParser(description='Run GPT2 in tinygrad', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--prompt', type=str, default=default_prompt, help="Phrase to start with")
parser.add_argument('--count', type=int, default=100, help="Max number of tokens to generate")
parser.add_argument('--temperature', type=float, default=0.8, help="Temperature in the softmax")
parser.add_argument('--model_size', type=str, default="gpt2-medium", help="Size of model to use [gpt2, gpt2-medium, gpt2-large, gpt2-xl]")
parser.add_argument('--timing', action='store_true', help="Print timing per token")
parser.add_argument('--seed', type=int, help="Set the random seed")
parser.add_argument('--batch_size', type=int, default=1, help="Set the input batch size")
parser.add_argument('--benchmark', type=int, default=-1, help="Benchmark GPT with the given number of tokens")
parser.add_argument('--noshow', action='store_true', help="Don't show the output")
args = parser.parse_args()
if args.seed is not None:
Tensor.manual_seed(args.seed)
print(f"using {args.model_size}")
gpt2 = GPT2.build_gguf(args.model_size) if args.model_size.startswith("gpt2_gguf_") else GPT2.build(args.model_size)
if args.benchmark != -1:
gpt2.model(Tensor.rand(args.batch_size, args.benchmark), Variable("a", 0, MAX_CONTEXT).bind(0)).realize()
else:
texts = gpt2.generate(args.prompt, args.count, args.temperature, timing=args.timing, batch_size=args.batch_size)
if not args.noshow:
print('Generating text...')
if len(texts) == 1: print(texts[0])
else:
for i,text in enumerate(texts): print(colored(f"Response {i}:", "green"), text)
# validate output!
if args.temperature == 0 and args.model_size == "gpt2-medium" and args.count == 10:
expected = {
default_prompt: "What is the answer to life, the universe, and everything?\n\nThe answer is that we are all one",
"Hello.": "Hello. I'm a little late to the party, but",
}
try:
assert texts[0] == expected[args.prompt]
print(colored("output validated", "green"))
except KeyError:
pass