2025-04-19 08:05:49 +09:00

333 lines
15 KiB
Python
Executable File

#!/usr/bin/env python3
import os
import time
import capnp
import numpy as np
from enum import Enum
from collections import defaultdict
from cereal import log, messaging
from cereal.services import SERVICE_LIST
from openpilot.common.transformations.orientation import rot_from_euler
from openpilot.common.realtime import config_realtime_process
from openpilot.common.params import Params
from openpilot.common.swaglog import cloudlog
from openpilot.selfdrive.locationd.helpers import rotate_std
from openpilot.selfdrive.locationd.models.pose_kf import PoseKalman, States
from openpilot.selfdrive.locationd.models.constants import ObservationKind, GENERATED_DIR
ACCEL_SANITY_CHECK = 100.0 # m/s^2
ROTATION_SANITY_CHECK = 10.0 # rad/s
TRANS_SANITY_CHECK = 200.0 # m/s
CALIB_RPY_SANITY_CHECK = 0.5 # rad (+- 30 deg)
MIN_STD_SANITY_CHECK = 1e-5 # m or rad
MAX_FILTER_REWIND_TIME = 0.8 # s
MAX_SENSOR_TIME_DIFF = 0.1 # s
YAWRATE_CROSS_ERR_CHECK_FACTOR = 30
INPUT_INVALID_LIMIT = 2.0 # 1 (camodo) / 9 (sensor) bad input[s] ignored
INPUT_INVALID_RECOVERY = 10.0 # ~10 secs to resume after exceeding allowed bad inputs by one
POSENET_STD_INITIAL_VALUE = 10.0
POSENET_STD_HIST_HALF = 20
def calculate_invalid_input_decay(invalid_limit, recovery_time, frequency):
return (1 - 1 / (2 * invalid_limit)) ** (1 / (recovery_time * frequency))
def init_xyz_measurement(measurement: capnp._DynamicStructBuilder, values: np.ndarray, stds: np.ndarray, valid: bool):
assert len(values) == len(stds) == 3
measurement.x, measurement.y, measurement.z = map(float, values)
measurement.xStd, measurement.yStd, measurement.zStd = map(float, stds)
measurement.valid = valid
class HandleLogResult(Enum):
SUCCESS = 0
TIMING_INVALID = 1
INPUT_INVALID = 2
SENSOR_SOURCE_INVALID = 3
class LocationEstimator:
def __init__(self, debug: bool):
self.kf = PoseKalman(GENERATED_DIR, MAX_FILTER_REWIND_TIME)
self.debug = debug
self.posenet_stds = np.array([POSENET_STD_INITIAL_VALUE] * (POSENET_STD_HIST_HALF * 2))
self.car_speed = 0.0
self.camodo_yawrate_distribution = np.array([0.0, 10.0]) # mean, std
self.device_from_calib = np.eye(3)
obs_kinds = [ObservationKind.PHONE_ACCEL, ObservationKind.PHONE_GYRO, ObservationKind.CAMERA_ODO_ROTATION, ObservationKind.CAMERA_ODO_TRANSLATION]
self.observations = {kind: np.zeros(3, dtype=np.float32) for kind in obs_kinds}
self.observation_errors = {kind: np.zeros(3, dtype=np.float32) for kind in obs_kinds}
def reset(self, t: float, x_initial: np.ndarray = PoseKalman.initial_x, P_initial: np.ndarray = PoseKalman.initial_P):
self.kf.init_state(x_initial, covs=P_initial, filter_time=t)
def _validate_sensor_source(self, source: log.SensorEventData.SensorSource):
# some segments have two IMUs, ignore the second one
return source != log.SensorEventData.SensorSource.bmx055
def _validate_sensor_time(self, sensor_time: float, t: float):
# ignore empty readings
if sensor_time == 0:
return False
# sensor time and log time should be close
sensor_time_invalid = abs(sensor_time - t) > MAX_SENSOR_TIME_DIFF
if sensor_time_invalid:
cloudlog.warning("Sensor reading ignored, sensor timestamp more than 100ms off from log time")
return not sensor_time_invalid
def _validate_timestamp(self, t: float):
kf_t = self.kf.t
invalid = not np.isnan(kf_t) and (kf_t - t) > MAX_FILTER_REWIND_TIME
if invalid:
cloudlog.warning("Observation timestamp is older than the max rewind threshold of the filter")
return not invalid
def _finite_check(self, t: float, new_x: np.ndarray, new_P: np.ndarray):
all_finite = np.isfinite(new_x).all() and np.isfinite(new_P).all()
if not all_finite:
cloudlog.error("Non-finite values detected, kalman reset")
self.reset(t)
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader) -> HandleLogResult:
new_x, new_P = None, None
if which == "accelerometer" and msg.which() == "acceleration":
sensor_time = msg.timestamp * 1e-9
if not self._validate_sensor_time(sensor_time, t) or not self._validate_timestamp(sensor_time):
return HandleLogResult.TIMING_INVALID
if not self._validate_sensor_source(msg.source):
return HandleLogResult.SENSOR_SOURCE_INVALID
v = msg.acceleration.v
meas = np.array([-v[2], -v[1], -v[0]])
if np.linalg.norm(meas) >= ACCEL_SANITY_CHECK:
return HandleLogResult.INPUT_INVALID
acc_res = self.kf.predict_and_observe(sensor_time, ObservationKind.PHONE_ACCEL, meas)
if acc_res is not None:
_, new_x, _, new_P, _, _, (acc_err,), _, _ = acc_res
self.observation_errors[ObservationKind.PHONE_ACCEL] = np.array(acc_err)
self.observations[ObservationKind.PHONE_ACCEL] = meas
elif which == "gyroscope" and msg.which() == "gyroUncalibrated":
sensor_time = msg.timestamp * 1e-9
if not self._validate_sensor_time(sensor_time, t) or not self._validate_timestamp(sensor_time):
return HandleLogResult.TIMING_INVALID
if not self._validate_sensor_source(msg.source):
return HandleLogResult.SENSOR_SOURCE_INVALID
v = msg.gyroUncalibrated.v
meas = np.array([-v[2], -v[1], -v[0]])
gyro_bias = self.kf.x[States.GYRO_BIAS]
gyro_camodo_yawrate_err = np.abs((meas[2] - gyro_bias[2]) - self.camodo_yawrate_distribution[0])
gyro_camodo_yawrate_err_threshold = YAWRATE_CROSS_ERR_CHECK_FACTOR * self.camodo_yawrate_distribution[1]
gyro_valid = gyro_camodo_yawrate_err < gyro_camodo_yawrate_err_threshold
if np.linalg.norm(meas) >= ROTATION_SANITY_CHECK or not gyro_valid:
return HandleLogResult.INPUT_INVALID
gyro_res = self.kf.predict_and_observe(sensor_time, ObservationKind.PHONE_GYRO, meas)
if gyro_res is not None:
_, new_x, _, new_P, _, _, (gyro_err,), _, _ = gyro_res
self.observation_errors[ObservationKind.PHONE_GYRO] = np.array(gyro_err)
self.observations[ObservationKind.PHONE_GYRO] = meas
elif which == "carState":
self.car_speed = abs(msg.vEgo)
elif which == "liveCalibration":
# Note that we use this message during calibration
if len(msg.rpyCalib) > 0:
calib = np.array(msg.rpyCalib)
if calib.min() < -CALIB_RPY_SANITY_CHECK or calib.max() > CALIB_RPY_SANITY_CHECK:
return HandleLogResult.INPUT_INVALID
self.device_from_calib = rot_from_euler(calib)
elif which == "cameraOdometry":
if not self._validate_timestamp(t):
return HandleLogResult.TIMING_INVALID
rot_device = np.matmul(self.device_from_calib, np.array(msg.rot))
trans_device = np.matmul(self.device_from_calib, np.array(msg.trans))
if np.linalg.norm(rot_device) > ROTATION_SANITY_CHECK or np.linalg.norm(trans_device) > TRANS_SANITY_CHECK:
return HandleLogResult.INPUT_INVALID
rot_calib_std = np.array(msg.rotStd)
trans_calib_std = np.array(msg.transStd)
if rot_calib_std.min() <= MIN_STD_SANITY_CHECK or trans_calib_std.min() <= MIN_STD_SANITY_CHECK:
return HandleLogResult.INPUT_INVALID
if np.linalg.norm(rot_calib_std) > 10 * ROTATION_SANITY_CHECK or np.linalg.norm(trans_calib_std) > 10 * TRANS_SANITY_CHECK:
return HandleLogResult.INPUT_INVALID
self.posenet_stds = np.roll(self.posenet_stds, -1)
self.posenet_stds[-1] = trans_calib_std[0]
# Multiply by N to avoid to high certainty in kalman filter because of temporally correlated noise
rot_calib_std *= 10
trans_calib_std *= 2
rot_device_std = rotate_std(self.device_from_calib, rot_calib_std)
trans_device_std = rotate_std(self.device_from_calib, trans_calib_std)
rot_device_noise = rot_device_std ** 2
trans_device_noise = trans_device_std ** 2
cam_odo_rot_res = self.kf.predict_and_observe(t, ObservationKind.CAMERA_ODO_ROTATION, rot_device, np.array([np.diag(rot_device_noise)]))
cam_odo_trans_res = self.kf.predict_and_observe(t, ObservationKind.CAMERA_ODO_TRANSLATION, trans_device, np.array([np.diag(trans_device_noise)]))
self.camodo_yawrate_distribution = np.array([rot_device[2], rot_device_std[2]])
if cam_odo_rot_res is not None:
_, new_x, _, new_P, _, _, (cam_odo_rot_err,), _, _ = cam_odo_rot_res
self.observation_errors[ObservationKind.CAMERA_ODO_ROTATION] = np.array(cam_odo_rot_err)
self.observations[ObservationKind.CAMERA_ODO_ROTATION] = rot_device
if cam_odo_trans_res is not None:
_, new_x, _, new_P, _, _, (cam_odo_trans_err,), _, _ = cam_odo_trans_res
self.observation_errors[ObservationKind.CAMERA_ODO_TRANSLATION] = np.array(cam_odo_trans_err)
self.observations[ObservationKind.CAMERA_ODO_TRANSLATION] = trans_device
if new_x is not None and new_P is not None:
self._finite_check(t, new_x, new_P)
return HandleLogResult.SUCCESS
def get_msg(self, sensors_valid: bool, inputs_valid: bool, filter_valid: bool):
state, cov = self.kf.x, self.kf.P
std = np.sqrt(np.diag(cov))
orientation_ned, orientation_ned_std = state[States.NED_ORIENTATION], std[States.NED_ORIENTATION]
velocity_device, velocity_device_std = state[States.DEVICE_VELOCITY], std[States.DEVICE_VELOCITY]
angular_velocity_device, angular_velocity_device_std = state[States.ANGULAR_VELOCITY], std[States.ANGULAR_VELOCITY]
acceleration_device, acceleration_device_std = state[States.ACCELERATION], std[States.ACCELERATION]
msg = messaging.new_message("livePose")
msg.valid = filter_valid
livePose = msg.livePose
init_xyz_measurement(livePose.orientationNED, orientation_ned, orientation_ned_std, filter_valid)
init_xyz_measurement(livePose.velocityDevice, velocity_device, velocity_device_std, filter_valid)
init_xyz_measurement(livePose.angularVelocityDevice, angular_velocity_device, angular_velocity_device_std, filter_valid)
init_xyz_measurement(livePose.accelerationDevice, acceleration_device, acceleration_device_std, filter_valid)
if self.debug:
livePose.debugFilterState.value = state.tolist()
livePose.debugFilterState.std = std.tolist()
livePose.debugFilterState.valid = filter_valid
livePose.debugFilterState.observations = [
{'kind': k, 'value': self.observations[k].tolist(), 'error': self.observation_errors[k].tolist()}
for k in self.observations.keys()
]
old_mean = np.mean(self.posenet_stds[:POSENET_STD_HIST_HALF])
new_mean = np.mean(self.posenet_stds[POSENET_STD_HIST_HALF:])
std_spike = (new_mean / old_mean) > 4.0 and new_mean > 7.0
livePose.inputsOK = inputs_valid
livePose.posenetOK = not std_spike or self.car_speed <= 5.0
livePose.sensorsOK = sensors_valid
return msg
def sensor_all_checks(acc_msgs, gyro_msgs, sensor_valid, sensor_recv_time, sensor_alive, simulation):
cur_time = time.monotonic()
for which, msgs in [("accelerometer", acc_msgs), ("gyroscope", gyro_msgs)]:
if len(msgs) > 0:
sensor_valid[which] = msgs[-1].valid
sensor_recv_time[which] = cur_time
if not simulation:
sensor_alive[which] = (cur_time - sensor_recv_time[which]) < 0.1
else:
sensor_alive[which] = len(msgs) > 0
return all(sensor_alive.values()) and all(sensor_valid.values())
def main():
config_realtime_process([0, 1, 2, 3], 5)
DEBUG = bool(int(os.getenv("DEBUG", "0")))
SIMULATION = bool(int(os.getenv("SIMULATION", "0")))
pm = messaging.PubMaster(['livePose'])
sm = messaging.SubMaster(['carState', 'liveCalibration', 'cameraOdometry'], poll='cameraOdometry')
# separate sensor sockets for efficiency
sensor_sockets = [messaging.sub_sock(which, timeout=20) for which in ['accelerometer', 'gyroscope']]
sensor_alive, sensor_valid, sensor_recv_time = defaultdict(bool), defaultdict(bool), defaultdict(float)
params = Params()
estimator = LocationEstimator(DEBUG)
filter_initialized = False
critcal_services = ["accelerometer", "gyroscope", "cameraOdometry"]
observation_input_invalid = defaultdict(int)
input_invalid_limit = {s: round(INPUT_INVALID_LIMIT * (SERVICE_LIST[s].frequency / 20.)) for s in critcal_services}
input_invalid_threshold = {s: input_invalid_limit[s] - 0.5 for s in critcal_services}
input_invalid_decay = {s: calculate_invalid_input_decay(input_invalid_limit[s], INPUT_INVALID_RECOVERY, SERVICE_LIST[s].frequency) for s in critcal_services}
initial_pose_data = params.get("LocationFilterInitialState")
if initial_pose_data is not None:
with log.Event.from_bytes(initial_pose_data) as lp_msg:
filter_state = lp_msg.livePose.debugFilterState
x_initial = np.array(filter_state.value, dtype=np.float64) if len(filter_state.value) != 0 else PoseKalman.initial_x
P_initial = np.diag(np.array(filter_state.std, dtype=np.float64)) if len(filter_state.std) != 0 else PoseKalman.initial_P
estimator.reset(None, x_initial, P_initial)
while True:
sm.update()
acc_msgs, gyro_msgs = (messaging.drain_sock(sock) for sock in sensor_sockets)
if filter_initialized:
msgs = []
for msg in acc_msgs + gyro_msgs:
t, valid, which, data = msg.logMonoTime, msg.valid, msg.which(), getattr(msg, msg.which())
msgs.append((t, valid, which, data))
for which, updated in sm.updated.items():
if not updated:
continue
t, valid, data = sm.logMonoTime[which], sm.valid[which], sm[which]
msgs.append((t, valid, which, data))
for log_mono_time, valid, which, msg in sorted(msgs, key=lambda x: x[0]):
if valid:
t = log_mono_time * 1e-9
res = estimator.handle_log(t, which, msg)
if which not in critcal_services:
continue
if res == HandleLogResult.TIMING_INVALID:
cloudlog.warning(f"Observation {which} ignored due to failed timing check")
observation_input_invalid[which] += 1
elif res == HandleLogResult.INPUT_INVALID:
cloudlog.warning(f"Observation {which} ignored due to failed sanity check")
observation_input_invalid[which] += 1
elif res == HandleLogResult.SUCCESS:
observation_input_invalid[which] *= input_invalid_decay[which]
else:
filter_initialized = sm.all_checks() and sensor_all_checks(acc_msgs, gyro_msgs, sensor_valid, sensor_recv_time, sensor_alive, SIMULATION)
if sm.updated["cameraOdometry"]:
critical_service_inputs_valid = all(observation_input_invalid[s] < input_invalid_threshold[s] for s in critcal_services)
inputs_valid = sm.all_valid() and critical_service_inputs_valid
sensors_valid = sensor_all_checks(acc_msgs, gyro_msgs, sensor_valid, sensor_recv_time, sensor_alive, SIMULATION)
msg = estimator.get_msg(sensors_valid, inputs_valid, filter_initialized)
pm.send("livePose", msg)
if __name__ == "__main__":
main()