2025-04-19 08:05:49 +09:00

178 lines
6.2 KiB
Python

import numpy as np
from typing import Any
from functools import cache
from cereal import log
from openpilot.common.transformations.orientation import rot_from_euler, euler_from_rot
@cache
def fft_next_good_size(n: int) -> int:
"""
smallest composite of 2, 3, 5, 7, 11 that is >= n
inspired by pocketfft
"""
if n <= 6:
return n
best, f2 = 2 * n, 1
while f2 < best:
f23 = f2
while f23 < best:
f235 = f23
while f235 < best:
f2357 = f235
while f2357 < best:
f235711 = f2357
while f235711 < best:
best = f235711 if f235711 >= n else best
f235711 *= 11
f2357 *= 7
f235 *= 5
f23 *= 3
f2 *= 2
return best
def parabolic_peak_interp(R, max_index):
if max_index == 0 or max_index == len(R) - 1:
return max_index
y_m1, y_0, y_p1 = R[max_index - 1], R[max_index], R[max_index + 1]
offset = 0.5 * (y_p1 - y_m1) / (2 * y_0 - y_p1 - y_m1)
return max_index + offset
def rotate_cov(rot_matrix, cov_in):
return rot_matrix @ cov_in @ rot_matrix.T
def rotate_std(rot_matrix, std_in):
return np.sqrt(np.diag(rotate_cov(rot_matrix, np.diag(std_in**2))))
class NPQueue:
def __init__(self, maxlen: int, rowsize: int) -> None:
self.maxlen = maxlen
self.arr = np.empty((0, rowsize))
def __len__(self) -> int:
return len(self.arr)
def append(self, pt: list[float]) -> None:
if len(self.arr) < self.maxlen:
self.arr = np.append(self.arr, [pt], axis=0)
else:
self.arr[:-1] = self.arr[1:]
self.arr[-1] = pt
class PointBuckets:
def __init__(self, x_bounds: list[tuple[float, float]], min_points: list[float], min_points_total: int, points_per_bucket: int, rowsize: int) -> None:
self.x_bounds = x_bounds
self.buckets = {bounds: NPQueue(maxlen=points_per_bucket, rowsize=rowsize) for bounds in x_bounds}
self.buckets_min_points = dict(zip(x_bounds, min_points, strict=True))
self.min_points_total = min_points_total
def __len__(self) -> int:
return sum([len(v) for v in self.buckets.values()])
def is_valid(self) -> bool:
individual_buckets_valid = all(len(v) >= min_pts for v, min_pts in zip(self.buckets.values(), self.buckets_min_points.values(), strict=True))
total_points_valid = self.__len__() >= self.min_points_total
return individual_buckets_valid and total_points_valid
def is_calculable(self) -> bool:
return all(len(v) > 0 for v in self.buckets.values())
def add_point(self, x: float, y: float) -> None:
raise NotImplementedError
def get_points(self, num_points: int = None) -> Any:
points = np.vstack([x.arr for x in self.buckets.values()])
if num_points is None:
return points
return points[np.random.choice(np.arange(len(points)), min(len(points), num_points), replace=False)]
def load_points(self, points: list[list[float]]) -> None:
for point in points:
self.add_point(*point)
class ParameterEstimator:
""" Base class for parameter estimators """
def reset(self) -> None:
raise NotImplementedError
def handle_log(self, t: int, which: str, msg: log.Event) -> None:
raise NotImplementedError
def get_msg(self, valid: bool, with_points: bool) -> log.Event:
raise NotImplementedError
class Measurement:
x, y, z = (property(lambda self: self.xyz[0]), property(lambda self: self.xyz[1]), property(lambda self: self.xyz[2]))
x_std, y_std, z_std = (property(lambda self: self.xyz_std[0]), property(lambda self: self.xyz_std[1]), property(lambda self: self.xyz_std[2]))
roll, pitch, yaw = x, y, z
roll_std, pitch_std, yaw_std = x_std, y_std, z_std
def __init__(self, xyz: np.ndarray, xyz_std: np.ndarray):
self.xyz: np.ndarray = xyz
self.xyz_std: np.ndarray = xyz_std
@classmethod
def from_measurement_xyz(cls, measurement: log.LivePose.XYZMeasurement) -> 'Measurement':
return cls(
xyz=np.array([measurement.x, measurement.y, measurement.z]),
xyz_std=np.array([measurement.xStd, measurement.yStd, measurement.zStd])
)
class Pose:
def __init__(self, orientation: Measurement, velocity: Measurement, acceleration: Measurement, angular_velocity: Measurement):
self.orientation = orientation
self.velocity = velocity
self.acceleration = acceleration
self.angular_velocity = angular_velocity
@classmethod
def from_live_pose(cls, live_pose: log.LivePose) -> 'Pose':
return Pose(
orientation=Measurement.from_measurement_xyz(live_pose.orientationNED),
velocity=Measurement.from_measurement_xyz(live_pose.velocityDevice),
acceleration=Measurement.from_measurement_xyz(live_pose.accelerationDevice),
angular_velocity=Measurement.from_measurement_xyz(live_pose.angularVelocityDevice)
)
class PoseCalibrator:
def __init__(self):
self.calib_valid = False
self.calib_from_device = np.eye(3)
def _transform_calib_from_device(self, meas: Measurement):
new_xyz = self.calib_from_device @ meas.xyz
new_xyz_std = rotate_std(self.calib_from_device, meas.xyz_std)
return Measurement(new_xyz, new_xyz_std)
def _ned_from_calib(self, orientation: Measurement):
ned_from_device = rot_from_euler(orientation.xyz)
ned_from_calib = ned_from_device @ self.calib_from_device.T
ned_from_calib_euler_meas = Measurement(euler_from_rot(ned_from_calib), np.full(3, np.nan))
return ned_from_calib_euler_meas
def build_calibrated_pose(self, pose: Pose) -> Pose:
ned_from_calib_euler = self._ned_from_calib(pose.orientation)
angular_velocity_calib = self._transform_calib_from_device(pose.angular_velocity)
acceleration_calib = self._transform_calib_from_device(pose.acceleration)
velocity_calib = self._transform_calib_from_device(pose.angular_velocity)
return Pose(ned_from_calib_euler, velocity_calib, acceleration_calib, angular_velocity_calib)
def feed_live_calib(self, live_calib: log.LiveCalibrationData):
calib_rpy = np.array(live_calib.rpyCalib)
device_from_calib = rot_from_euler(calib_rpy)
self.calib_from_device = device_from_calib.T
self.calib_valid = live_calib.calStatus == log.LiveCalibrationData.Status.calibrated