#!/usr/bin/env python import unittest import numpy as np from tinygrad.tensor import Tensor from tinygrad.ops import Device from tinygrad.helpers import dtypes N = 200 # has to be bigger than the cache to fail class TestAssign(unittest.TestCase): def test_simple_assignment(self): a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N) b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N) a.realize() b.realize() ba1 = a.lazydata.realized bb1 = b.lazydata.realized a += b a.realize() ba2 = a.lazydata.realized assert ba1 == ba2 and ba1 != bb1 np.testing.assert_allclose(a.numpy(), (np.arange(N*N)*2).reshape((N,N))) @unittest.skipIf(Device.DEFAULT == "CPU" or Device.DEFAULT == "TORCH", "questionable tests") def test_permuted_assignment(self): a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N) b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N) a.realize() b.realize() ba1 = a.lazydata.realized bb1 = b.lazydata.realized a = a.permute(1,0) a += b a.realize() ba2 = a.lazydata.realized assert ba1 != ba2 and ba1 != bb1 np.testing.assert_allclose(a.numpy(), np.arange(N*N).reshape((N,N)) + np.arange(N*N).reshape((N,N)).transpose(1,0)) def test_post_permuted_assignment(self): a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N) b = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N) a.realize() b.realize() #GlobalCounters.cache = [] ba1 = a.lazydata.realized bb1 = b.lazydata.realized a.assign(a.permute(1,0) + b) # this should not work! a.realize() ba2 = a.lazydata.realized # NOTE: don't test that it's assigned #assert ba1 == ba2 and ba1 != bb1 np.testing.assert_allclose(a.numpy(), np.arange(N*N).reshape((N,N)) + np.arange(N*N).reshape((N,N)).transpose(1,0)) # TODO: is there a way to sneak in a permute such that it returns the wrong answer? def test_cast_assignment(self): a = Tensor(np.arange(N*N, dtype=np.float32)).reshape(N,N) a.realize() oba1 = a.lazydata.output_buffer a.assign(a.cast(dtypes.int32).realize()) a.realize() oba2 = a.lazydata.output_buffer assert oba1 is None and oba2 is None np.testing.assert_allclose(a.numpy(), np.arange(N*N,dtype=np.int32).reshape((N,N))) if __name__ == "__main__": unittest.main()