from typing import List from models.resnet import ResNet50 from tinygrad.tensor import Tensor from tinygrad.ops import LoadOps, Device, Compiled from tinygrad.codegen.linearizer import Linearizer from tinygrad.features.search import time_linearizer, beam_search from tinygrad.helpers import ansilen, DEBUG, getenv from tinygrad.lazy import vars_from_ast from tinygrad.shape.symbolic import sym_infer if __name__ == "__main__": mdl = ResNet50() seen = set() # the device we are optimizing for device: Compiled = Device[Device.DEFAULT] print(f"optimizing for {Device.DEFAULT}") # first model run to init the weights, they are saved in seen mdl(Tensor.empty(64, 3, 224, 224)).lazydata.schedule(seen) # run model again to get only what changes, these are the kernels of the model x = Tensor.empty(64, 3, 224, 224) out = mdl(x) sched = out.lazydata.schedule(seen) sched = [x for x in sched if x.ast.op not in LoadOps] # focus on one kernel if getenv("KERNEL", -1) >= 0: sched = sched[getenv("KERNEL", -1):getenv("KERNEL", -1)+1] # work with the schedule total_tm = 0 running_gflops = 0 for i,si in enumerate(sched): # create output/input buffers (NOTE: bufs_from_lin is slower, so we don't use it. TODO: fix) rawbufs = [device.buffer(si.out.st.size(), si.out.dtype)] + [device.buffer(x.st.size(), x.dtype) for x in si.inputs] #rawbufs = bufs_from_lin(lin) # "linearize" the op into uops in different ways lins:List[Linearizer] = [] # always try hand coded opt lin = Linearizer(si.ast, device.linearizer_opts) lin.hand_coded_optimizations() lins.append(lin) # maybe try tensor cores lin = Linearizer(si.ast, device.linearizer_opts) if lin.apply_tensor_cores(): lins.append(lin) # try a beam search if getenv("BEAM"): lin = Linearizer(si.ast, device.linearizer_opts) lin = beam_search(lin, rawbufs, getenv("BEAM"), bool(getenv("BEAM_ESTIMATE", 1))) lins.append(lin) # benchmark the programs choices = [] for lin in lins: tm = time_linearizer(lin, rawbufs, allow_test_size=False, cnt=10) gflops = sym_infer(lin.info.flops, {k:k.min for k in vars_from_ast(lin.ast)})*1e-9/tm choices.append((tm, gflops, lin.linearize())) # print all kernels if DEBUG >= 1: print(f" kernel {i:2d} {lin.display_name+' '*(37-ansilen(lin.display_name))} {str(lin.global_size):18s} {str(lin.local_size):12s} takes {tm*1000:7.2f} ms, {gflops:6.0f} GFLOPS") tm, gflops, lin = sorted(choices, key=lambda x: x[0])[0] print(f"*** {total_tm*1000:7.2f} ms : kernel {i:2d} {lin.display_name+' '*(37-ansilen(lin.display_name))} {str(lin.global_size):18s} {str(lin.local_size):12s} takes {tm*1000:7.2f} ms, {gflops:6.0f} GFLOPS") total_tm += tm running_gflops += gflops * tm print(f"******* total {total_tm*1000:.2f} ms, {running_gflops/total_tm:6.0f} GFLOPS")