#!/usr/bin/env python3 # setup for distributed from extra import dist from tinygrad.helpers import getenv, dtypes if __name__ == "__main__": if getenv("DIST"): dist.preinit() # tinygrad implementation of https://github.com/tysam-code/hlb-CIFAR10/blob/main/main.py # https://myrtle.ai/learn/how-to-train-your-resnet-8-bag-of-tricks/ # https://siboehm.com/articles/22/CUDA-MMM import random, time import numpy as np from typing import Any, Dict, Optional, SupportsIndex, Type, Union from extra.datasets import fetch_cifar, cifar_mean, cifar_std from tinygrad import nn from tinygrad.nn.state import get_state_dict from tinygrad.nn import optim from tinygrad.ops import Device from tinygrad.tensor import Tensor from tinygrad.helpers import GlobalCounters from tinygrad.shape.symbolic import Node from extra.lr_scheduler import OneCycleLR from tinygrad.jit import TinyJit from extra.dist import collectives BS, EVAL_BS, STEPS = getenv("BS", 512), getenv('EVAL_BS', 500), getenv("STEPS", 1000) if getenv("HALF", 0): Tensor.default_type = dtypes.float16 np_dtype: Type[Union[np.float16, np.float32]] = np.float16 else: Tensor.default_type = dtypes.float32 np_dtype = np.float32 class BatchNorm(nn.BatchNorm2d): def __init__(self, num_features): super().__init__(num_features, track_running_stats=False, eps=1e-12, momentum=0.85, affine=True) self.weight.requires_grad = False self.bias.requires_grad = True class ConvGroup: def __init__(self, channels_in, channels_out): self.conv1 = nn.Conv2d(channels_in, channels_out, kernel_size=3, padding=1, bias=False) self.conv2 = nn.Conv2d(channels_out, channels_out, kernel_size=3, padding=1, bias=False) self.norm1 = BatchNorm(channels_out) self.norm2 = BatchNorm(channels_out) def __call__(self, x): x = self.conv1(x) x = x.max_pool2d(2) x = x.float() x = self.norm1(x) x = x.cast(Tensor.default_type) x = x.gelu() residual = x x = self.conv2(x) x = x.float() x = self.norm2(x) x = x.cast(Tensor.default_type) x = x.gelu() return x + residual class SpeedyResNet: def __init__(self, W): self.whitening = W self.net = [ nn.Conv2d(12, 32, kernel_size=1, bias=False), lambda x: x.gelu(), ConvGroup(32, 64), ConvGroup(64, 256), ConvGroup(256, 512), lambda x: x.max((2,3)), nn.Linear(512, 10, bias=False), lambda x: x.mul(1./9) ] def __call__(self, x, training=True): # pad to 32x32 because whitening conv creates 31x31 images that are awfully slow to compute with # TODO: remove the pad but instead let the kernel optimizer itself forward = lambda x: x.conv2d(self.whitening).pad2d((1,0,0,1)).sequential(self.net) return forward(x) if training else forward(x)*0.5 + forward(x[..., ::-1])*0.5 def train_cifar(): # hyper-parameters were exactly the same as the original repo bias_scaler = 58 hyp: Dict[str, Any] = { 'seed' : 209, 'opt': { 'bias_lr': 1.76 * bias_scaler/512, 'non_bias_lr': 1.76 / 512, 'bias_decay': 1.08 * 6.45e-4 * BS/bias_scaler, 'non_bias_decay': 1.08 * 6.45e-4 * BS, 'final_lr_ratio': 0.025, 'initial_div_factor': 1e16, 'label_smoothing': 0.20, 'momentum': 0.85, 'percent_start': 0.23, 'loss_scale_scaler': 1./128 # (range: ~1/512 - 16+, 1/128 w/ FP16) }, 'net': { 'kernel_size': 2, # kernel size for the whitening layer 'cutmix_size': 3, 'cutmix_steps': 499, 'pad_amount': 2 }, 'ema': { 'steps': 399, 'decay_base': .95, 'decay_pow': 1.6, 'every_n_steps': 5, } } def set_seed(seed): Tensor.manual_seed(getenv('SEED', seed)) random.seed(getenv('SEED', seed)) # ========== Model ========== # NOTE: np.linalg.eigh only supports float32 so the whitening layer weights need to be converted to float16 manually def whitening(X, kernel_size=hyp['net']['kernel_size']): def _cov(X): X = X/np.sqrt(X.shape[0] - 1) return X.T @ X def _patches(data, patch_size=(kernel_size,kernel_size)): h, w = patch_size c = data.shape[1] axis: SupportsIndex = (2, 3) # type: ignore return np.lib.stride_tricks.sliding_window_view(data, window_shape=(h,w), axis=axis).transpose((0,3,2,1,4,5)).reshape((-1,c,h,w)) def _eigens(patches): n,c,h,w = patches.shape Σ = _cov(patches.reshape(n, c*h*w)) Λ, V = np.linalg.eigh(Σ, UPLO='U') return np.flip(Λ, 0), np.flip(V.T.reshape(c*h*w, c, h, w), 0) Λ, V = _eigens(_patches(X.numpy())) W = V/np.sqrt(Λ+1e-2)[:,None,None,None] return Tensor(W.astype(np_dtype), requires_grad=False) # ========== Loss ========== def cross_entropy(x:Tensor, y:Tensor, reduction:str='mean', label_smoothing:float=0.0) -> Tensor: divisor = y.shape[1] assert not isinstance(divisor, Node), "sint not supported as divisor" y = (1 - label_smoothing)*y + label_smoothing / divisor if reduction=='none': return -x.log_softmax(axis=1).mul(y).sum(axis=1) if reduction=='sum': return -x.log_softmax(axis=1).mul(y).sum(axis=1).sum() return -x.log_softmax(axis=1).mul(y).sum(axis=1).mean() # ========== Preprocessing ========== # TODO currently this only works for RGB in format of NxCxHxW and pads the HxW # implemented in recursive fashion but figuring out how to switch indexing dim # during the loop was a bit tricky def pad_reflect(X, size=2) -> Tensor: padding = ((0,0),(0,0),(size,size),(size,size)) p = padding[3] s = X.shape[3] X_lr = X[...,:,1:1+p[0]].flip(3).pad(((0,0),(0,0),(0,0),(0,s+p[0]))) + X[...,:,-1-p[1]:-1].flip(3).pad(((0,0),(0,0),(0,0),(s+p[1],0))) X = X.pad(((0,0),(0,0),(0,0),p)) + X_lr p = padding[2] s = X.shape[2] X_lr = X[...,1:1+p[0],:].flip(2).pad(((0,0),(0,0),(0,s+p[0]),(0,0))) + X[...,-1-p[1]:-1,:].flip(2).pad(((0,0),(0,0),(s+p[1],0),(0,0))) X = X.pad(((0,0),(0,0),p,(0,0))) + X_lr return X # return a binary mask in the format of BS x C x H x W where H x W contains a random square mask def make_square_mask(shape, mask_size) -> Tensor: is_even = int(mask_size % 2 == 0) center_max = shape[-2]-mask_size//2-is_even center_min = mask_size//2-is_even center_x = (Tensor.rand(shape[0])*(center_max-center_min)+center_min).floor() center_y = (Tensor.rand(shape[0])*(center_max-center_min)+center_min).floor() d_x = Tensor.arange(0, shape[-1]).reshape((1,1,1,shape[-1])) - center_x.reshape((-1,1,1,1)) d_y = Tensor.arange(0, shape[-2]).reshape((1,1,shape[-2],1)) - center_y.reshape((-1,1,1,1)) d_x =(d_x >= -(mask_size // 2) + is_even) * (d_x <= mask_size // 2) d_y =(d_y >= -(mask_size // 2) + is_even) * (d_y <= mask_size // 2) mask = d_y * d_x return mask def random_crop(X:Tensor, crop_size=32): mask = make_square_mask(X.shape, crop_size) mask = mask.repeat((1,3,1,1)) X_cropped = Tensor(X.flatten().numpy()[mask.flatten().numpy().astype(bool)]) return X_cropped.reshape((-1, 3, crop_size, crop_size)) def cutmix(X:Tensor, Y:Tensor, mask_size=3): # fill the square with randomly selected images from the same batch mask = make_square_mask(X.shape, mask_size) order = list(range(0, X.shape[0])) random.shuffle(order) X_patch = Tensor(X.numpy()[order,...]) Y_patch = Tensor(Y.numpy()[order]) X_cutmix = Tensor.where(mask, X_patch, X) mix_portion = float(mask_size**2)/(X.shape[-2]*X.shape[-1]) Y_cutmix = mix_portion * Y_patch + (1. - mix_portion) * Y return X_cutmix, Y_cutmix # the operations that remain inside batch fetcher is the ones that involves random operations def fetch_batches(X_in:Tensor, Y_in:Tensor, BS:int, is_train:bool): step, cnt = 0, 0 while True: st = time.monotonic() X, Y = X_in, Y_in order = list(range(0, X.shape[0])) random.shuffle(order) if is_train: X = random_crop(X, crop_size=32) X = Tensor.where(Tensor.rand(X.shape[0],1,1,1) < 0.5, X[..., ::-1], X) # flip LR if step >= hyp['net']['cutmix_steps']: X, Y = cutmix(X, Y, mask_size=hyp['net']['cutmix_size']) X, Y = X.numpy(), Y.numpy() et = time.monotonic() print(f"shuffling {'training' if is_train else 'test'} dataset in {(et-st)*1e3:.2f} ms ({cnt})") for i in range(0, X.shape[0], BS): # pad the last batch batch_end = min(i+BS, Y.shape[0]) x = Tensor(X[order[batch_end-BS:batch_end],:]) y = Tensor(Y[order[batch_end-BS:batch_end]]) step += 1 yield x, y cnt += 1 if not is_train: break transform = [ lambda x: x / 255.0, lambda x: (x.reshape((-1,3,32,32)) - Tensor(cifar_mean).reshape((1,3,1,1)))/Tensor(cifar_std).reshape((1,3,1,1)) ] class modelEMA(): def __init__(self, w, net): # self.model_ema = copy.deepcopy(net) # won't work for opencl due to unpickeable pyopencl._cl.Buffer self.net_ema = SpeedyResNet(w) for net_ema_param, net_param in zip(get_state_dict(self.net_ema).values(), get_state_dict(net).values()): net_ema_param.requires_grad = False net_ema_param.assign(net_param.numpy()) @TinyJit def update(self, net, decay): # TODO with Tensor.no_grad() Tensor.no_grad = True for net_ema_param, (param_name, net_param) in zip(get_state_dict(self.net_ema).values(), get_state_dict(net).items()): # batchnorm currently is not being tracked if not ("num_batches_tracked" in param_name) and not ("running" in param_name): net_ema_param.assign(net_ema_param.detach()*decay + net_param.detach()*(1.-decay)).realize() Tensor.no_grad = False set_seed(hyp['seed']) # this import needs to be done here because this is running in a subprocess from extra.dist import OOB assert OOB is not None or not getenv("DIST"), "OOB should be initialized" rank, world_size = getenv("RANK"), getenv("WORLD_SIZE", 1) X_train, Y_train, X_test, Y_test = fetch_cifar() # load data and label into GPU and convert to dtype accordingly X_train, X_test = X_train.to(device=Device.DEFAULT).float(), X_test.to(device=Device.DEFAULT).float() Y_train, Y_test = Y_train.to(device=Device.DEFAULT).float(), Y_test.to(device=Device.DEFAULT).float() # one-hot encode labels Y_train, Y_test = Tensor.eye(10)[Y_train], Tensor.eye(10)[Y_test] # preprocess data X_train, X_test = X_train.sequential(transform), X_test.sequential(transform) # precompute whitening patches W = whitening(X_train) # initialize model weights model = SpeedyResNet(W) # padding is not timed in the original repo since it can be done all at once X_train = pad_reflect(X_train, size=hyp['net']['pad_amount']) # Convert data and labels to the default dtype X_train, Y_train, X_test, Y_test = X_train.cast(Tensor.default_type), Y_train.cast(Tensor.default_type), X_test.cast(Tensor.default_type), Y_test.cast(Tensor.default_type) # parse the training params into bias and non-bias params_dict = get_state_dict(model) params_bias = [] params_non_bias = [] for params in params_dict: if params_dict[params].requires_grad is not False: if 'bias' in params: params_bias.append(params_dict[params]) else: params_non_bias.append(params_dict[params]) opt_bias = optim.SGD(params_bias, lr=0.01, momentum=hyp['opt']['momentum'], nesterov=True, weight_decay=hyp['opt']['bias_decay']) opt_non_bias = optim.SGD(params_non_bias, lr=0.01, momentum=hyp['opt']['momentum'], nesterov=True, weight_decay=hyp['opt']['non_bias_decay']) # NOTE taken from the hlb_CIFAR repository, might need to be tuned initial_div_factor = hyp['opt']['initial_div_factor'] final_lr_ratio = hyp['opt']['final_lr_ratio'] pct_start = hyp['opt']['percent_start'] lr_sched_bias = OneCycleLR(opt_bias, max_lr=hyp['opt']['bias_lr'] ,pct_start=pct_start, div_factor=initial_div_factor, final_div_factor=1./(initial_div_factor*final_lr_ratio), total_steps=STEPS) lr_sched_non_bias = OneCycleLR(opt_non_bias, max_lr=hyp['opt']['non_bias_lr'] ,pct_start=pct_start, div_factor=initial_div_factor, final_div_factor=1./(initial_div_factor*final_lr_ratio), total_steps=STEPS) loss_batchsize_scaler = 512/BS @TinyJit def train_step_jitted(model, optimizer, lr_scheduler, X, Y): out = model(X) loss = cross_entropy(out, Y, reduction='none' ,label_smoothing=hyp['opt']['label_smoothing']).mul(hyp['opt']['loss_scale_scaler']*loss_batchsize_scaler).sum().div(hyp['opt']['loss_scale_scaler']) if not getenv("DISABLE_BACKWARD"): # index 0 for bias and 1 for non-bias optimizer[0].zero_grad() optimizer[1].zero_grad() loss.backward() if getenv("DIST"): # sync gradients across ranks bucket, offset = [], 0 for _, v in params_dict.items(): if v.grad is not None: bucket.append(v.grad.flatten()) grads = collectives.allreduce(Tensor.cat(*bucket), cache_id="grads") for _, v in params_dict.items(): if v.grad is not None: v.grad.assign(grads[offset:offset+v.grad.numel()].reshape(*v.grad.shape)) offset += v.grad.numel() optimizer[0].step() optimizer[1].step() lr_scheduler[0].step() lr_scheduler[1].step() return loss.realize() def eval_step(model, X, Y): out = model(X, training=False) loss = cross_entropy(out, Y, reduction='mean') correct = out.argmax(axis=1) == Y.argmax(axis=1) return correct.realize(), loss.realize() eval_step_jitted = TinyJit(eval_step) eval_step_ema_jitted = TinyJit(eval_step) # 97 steps in 2 seconds = 20ms / step # step is 1163.42 GOPS = 56 TFLOPS!!!, 41% of max 136 # 4 seconds for tfloat32 ~ 28 TFLOPS, 41% of max 68 # 6.4 seconds for float32 ~ 17 TFLOPS, 50% of max 34.1 # 4.7 seconds for float32 w/o channels last. 24 TFLOPS. we get 50ms then i'll be happy. only 64x off # https://www.anandtech.com/show/16727/nvidia-announces-geforce-rtx-3080-ti-3070-ti-upgraded-cards-coming-in-june # 136 TFLOPS is the theoretical max w float16 on 3080 Ti model_ema: Optional[modelEMA] = None projected_ema_decay_val = hyp['ema']['decay_base'] ** hyp['ema']['every_n_steps'] i = 0 batcher = fetch_batches(X_train, Y_train, BS=BS, is_train=True) with Tensor.train(): st = time.monotonic() while i <= STEPS: if i%getenv("EVAL_STEPS", STEPS) == 0 and i > 1: st_eval = time.monotonic() # Use Tensor.training = False here actually bricks batchnorm, even with track_running_stats=True corrects = [] corrects_ema = [] losses = [] losses_ema = [] for Xt, Yt in fetch_batches(X_test, Y_test, BS=EVAL_BS, is_train=False): # further split batch if distributed if getenv("DIST"): Xt, Yt = Xt.chunk(min(world_size, 5), 0)[min(rank, 4)], Yt.chunk(min(world_size, 5), 0)[min(rank, 4)] correct, loss = eval_step_jitted(model, Xt, Yt) losses.append(loss.numpy().tolist()) corrects.extend(correct.numpy().tolist()) if model_ema: correct_ema, loss_ema = eval_step_ema_jitted(model_ema.net_ema, Xt, Yt) losses_ema.append(loss_ema.numpy().tolist()) corrects_ema.extend(correct_ema.numpy().tolist()) # collect accuracy across ranks correct_sum, correct_len = sum(corrects), len(corrects) if model_ema: correct_sum_ema, correct_len_ema = sum(corrects_ema), len(corrects_ema) if getenv("DIST"): if rank == 0: for j in range(1, min(world_size, 5)): if model_ema: recv_sum, recv_len, recv_sum_ema, recv_len_ema = OOB.recv(j) else: recv_sum, recv_len = OOB.recv(j) correct_sum += recv_sum correct_len += recv_len if model_ema: correct_sum_ema += recv_sum_ema correct_len_ema += recv_len_ema elif rank < min(world_size, 5): if model_ema: OOB.send((correct_sum, correct_len, correct_sum_ema, correct_len_ema), 0) else: OOB.send((correct_sum, correct_len), 0) # only rank 0 prints if rank == 0: acc = correct_sum/correct_len*100.0 if model_ema: acc_ema = correct_sum_ema/correct_len_ema*100.0 print(f"eval {correct_sum}/{correct_len} {acc:.2f}%, {(sum(losses)/len(losses)):7.2f} val_loss STEP={i} (in {(time.monotonic()-st)*1e3:.2f} ms)") if model_ema: print(f"eval ema {correct_sum_ema}/{correct_len_ema} {acc_ema:.2f}%, {(sum(losses_ema)/len(losses_ema)):7.2f} val_loss STEP={i}") if STEPS == 0 or i==STEPS: break X, Y = next(batcher) if getenv("DIST"): X, Y = X.chunk(world_size, 0)[rank], Y.chunk(world_size, 0)[rank] GlobalCounters.reset() loss = train_step_jitted(model, [opt_bias, opt_non_bias], [lr_sched_bias, lr_sched_non_bias], X, Y) et = time.monotonic() loss_cpu = loss.numpy() # EMA for network weights if i > hyp['ema']['steps'] and (i+1) % hyp['ema']['every_n_steps'] == 0: if model_ema is None: model_ema = modelEMA(W, model) model_ema.update(model, Tensor([projected_ema_decay_val*(i/STEPS)**hyp['ema']['decay_pow']])) cl = time.monotonic() if not getenv("DIST"): print(f"{i:3d} {(cl-st)*1000.0:7.2f} ms run, {(et-st)*1000.0:7.2f} ms python, {(cl-et)*1000.0:7.2f} ms CL, {loss_cpu:7.2f} loss, {opt_non_bias.lr.numpy()[0]:.6f} LR, {GlobalCounters.mem_used/1e9:.2f} GB used, {GlobalCounters.global_ops*1e-9/(cl-st):9.2f} GFLOPS") else: print(f"{i:3d} {(cl-st)*1000.0:7.2f} ms run, {(et-st)*1000.0:7.2f} ms python, {(cl-et)*1000.0:7.2f} ms CL, {loss_cpu:7.2f} loss, {opt_non_bias.lr.numpy()[0]:.6f} LR, {world_size*GlobalCounters.mem_used/1e9:.2f} GB used, {world_size*GlobalCounters.global_ops*1e-9/(cl-st):9.2f} GFLOPS") st = cl i += 1 if __name__ == "__main__": if not getenv("DIST"): train_cifar() else: # distributed if getenv("HIP"): from tinygrad.runtime.ops_hip import HIP devices = [f"hip:{i}" for i in range(HIP.device_count)] else: from tinygrad.runtime.ops_gpu import CL devices = [f"gpu:{i}" for i in range(len(CL.devices))] world_size = len(devices) # ensure that the batch size is divisible by the number of devices assert BS % world_size == 0, f"batch size {BS} is not divisible by world size {world_size}" # ensure that the evaluation batch size is divisible by the number of devices assert EVAL_BS % min(world_size, 5) == 0, f"evaluation batch size {EVAL_BS} is not divisible by world size {min(world_size, 5)}" # init out-of-band communication dist.init_oob(world_size) # start the processes processes = [] for rank, device in enumerate(devices): processes.append(dist.spawn(rank, device, fn=train_cifar, args=())) for p in processes: p.join()