import numpy as np class FirstOrderFilter: # first order filter def __init__(self, x0, rc, dt, initialized=True): self.x = x0 self.dt = dt self.update_alpha(rc) self.initialized = initialized def update_alpha(self, rc): self.alpha = self.dt / (rc + self.dt) def update(self, x): if self.initialized: self.x = (1. - self.alpha) * self.x + self.alpha * x else: self.initialized = True self.x = x return self.x class StreamingMovingAverage: def __init__(self, window_size): self.window_size = window_size self.values = [] self.sum = 0 self.result = 0 def set(self, value): #for i in range(len(self.values)): # self.values[i] = value #self.sum = value * len(self.values) self.values.clear() self.values.append(value) self.sum = value self.result = value return value def process(self, value, median = False): self.values.append(value) self.sum += value if len(self.values) > self.window_size: self.sum -= self.values.pop(0) self.result = float(np.median(self.values)) if median else float(self.sum) / len(self.values) return self.result