import unittest from tinygrad.jit import TinyJit from tinygrad.helpers import getenv from tinygrad.shape.symbolic import Variable from tinygrad.tensor import Tensor, Device import numpy as np @unittest.skipIf(getenv("ARM64") or getenv("PTX"), "ARM64 and PTX are not supported") @unittest.skipUnless(Device.DEFAULT in ["GPU", "METAL", "CLANG", "CUDA", "LLVM"], f"{Device.DEFAULT} is not supported") class TestSymbolicJit(unittest.TestCase): def test_plus1(self): def f(a): return (a+1).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) symbolic = jf(a.reshape(3, vi)).reshape(3, i).numpy() expected = f(a).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert len(jf.jit_cache) == 1 def test_reshape_inside_plus1(self): def f(a, jit=False, jit_ctx=None): if jit: a = a.reshape(3, Variable("i", 1, 10).bind(a.shape[1])) return (a+1).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10) a = Tensor.rand(3, i) symbolic = jf(a, jit=True, jit_ctx={vi: i}).reshape(3, i).numpy() expected = f(a).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert len(jf.jit_cache) == 1 def test_add(self): def f(a, b): return (a+b).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) b = Tensor.rand(3, i) symbolic = jf(a.reshape(3, vi), b.reshape(3, vi)).reshape(3, i).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert len(jf.jit_cache) == 1 def test_matmul(self): def f(a, b): return (a@b).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) b = Tensor.rand(i, 5) symbolic = jf(a.reshape(3, vi), b.reshape(vi, 5)).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert len(jf.jit_cache) == 1 def test_mixed_with_no_symbol_kernel(self): def f(a, b): s = (a@b).realize() s = (s+s).realize() # this one does not have symbols in input return s jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) b = Tensor.rand(i, 5) symbolic = jf(a.reshape(3, vi), b.reshape(vi, 5)).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert len(jf.jit_cache) == 2 def test_attention(self): def f(q, k, v): return Tensor.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) q = Tensor.rand(2, 1, 4, 8) k = Tensor.rand(2, i, 4, 8) v = Tensor.rand(2, i, 4, 8) symbolic = jf(q, k.reshape(2, vi, 4, 8), v.reshape(2, vi, 4, 8)).reshape(2, 4, 1, 8).numpy() expected = f(q, k, v).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert len(jf.jit_cache) == 6 def test_cat_dim0(self): def f(a, b): return a.cat(b, dim=0).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(i, 3) b = Tensor.rand(2, 3) symbolic = jf(a.reshape(vi, 3), b).reshape(i+2, 3).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert len(jf.jit_cache) == 1 def test_cat_dim1(self): def f(a, b): return a.cat(b, dim=1).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i) b = Tensor.rand(3, 2) symbolic = jf(a.reshape(3, vi), b).reshape(3, i+2).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert len(jf.jit_cache) == 1 def test_cat_dim0_two_vars(self): def f(a, b): return a.cat(b, dim=0).realize() jf = TinyJit(f) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) a = Tensor.rand(i, 3) b = Tensor.rand(j, 3) symbolic = jf(a.reshape(vi, 3), b.reshape(vj, 3)).reshape(i+j, 3).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert len(jf.jit_cache) == 1 def test_cat_dim1_two_vars(self): def f(a, b): return a.cat(b, dim=1).realize() jf = TinyJit(f) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) a = Tensor.rand(3, i) b = Tensor.rand(3, j) symbolic = jf(a.reshape(3, vi), b.reshape(3, vj)).reshape(3, i+j).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert len(jf.jit_cache) == 1 def test_two_vars_plus1(self): def f(a, b): return (a@b+1).realize() jf = TinyJit(f) for i in range(1, 5): for j in range(1, 5): vi = Variable("i", 1, 10).bind(i) vj = Variable("j", 1, 10).bind(j) a = Tensor.rand(i, 3) b = Tensor.rand(3, j) symbolic = jf(a.reshape(vi, 3), b.reshape(3, vj)).reshape(i, j).numpy() expected = f(a, b).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert len(jf.jit_cache) == 1 def test_jit_symbolic_shape_mismatch(self): @TinyJit def add(a, b): return (a+b).realize() for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(3, i).reshape(3, vi) b = Tensor.rand(3, i).reshape(3, vi) c = add(a, b) vi2 = Variable("i", 1, 10).bind(7) a = Tensor.rand(3, 7).reshape(3, vi2) bad = Tensor.rand(4, 7).reshape(4, vi2) with self.assertRaises(AssertionError): add(a, bad) def test_shrink(self): # shrink is a movement, so we pair it with a simple function to test the JIT interaction def f(a): return (a+1).realize() jf = TinyJit(f) for i in range(1, 5): vi = Variable("i", 1, 10).bind(i) a = Tensor.rand(7, 11) symbolic = a.shrink(((3,5),(vi,vi+2))) symbolic = jf(symbolic).numpy() expected = f(a.shrink(((3,5),(i,i+2)))).numpy() np.testing.assert_allclose(symbolic, expected, atol=1e-6, rtol=1e-6) assert len(jf.jit_cache) == 1 if __name__ == '__main__': unittest.main()