import numpy as np from collections import deque class FirstOrderFilter: # first order filter def __init__(self, x0, rc, dt, initialized=True): self.x = x0 self.dt = dt self.update_alpha(rc) self.initialized = initialized def update_alpha(self, rc): self.alpha = self.dt / (rc + self.dt) def update(self, x): if self.initialized: self.x = (1. - self.alpha) * self.x + self.alpha * x else: self.initialized = True self.x = x return self.x class MyMovingAverage: def __init__(self, window_size, value=None): self.window_size = window_size if (value is not None): self.values = deque([value] * window_size, maxlen=window_size) self.sum = value * window_size self.result = value else: self.values = deque(maxlen=window_size) self.sum = 0 self.result = 0 def set(self, value): self.values.clear() self.values.append(value) self.sum = value self.result = value return value def set_all(self, value): self.values = deque([value] * self.window_size, maxlen=self.window_size) self.sum = value * self.window_size self.result = value return value def process(self, value, median=False): self.values.append(value) self.sum = sum(self.values) self.result = float(np.median(self.values)) if median else float(self.sum) / len(self.values) return self.result