Controls - Model Selector

Manage openpilot's driving models.
This commit is contained in:
FrogAi 2024-05-27 23:03:21 -07:00
parent 4fea7c0d28
commit 78638715cd
17 changed files with 371 additions and 62 deletions

View File

@ -571,5 +571,6 @@ selfdrive/frogpilot/controls/lib/conditional_experimental_mode.py
selfdrive/frogpilot/controls/lib/frogpilot_functions.py
selfdrive/frogpilot/controls/lib/frogpilot_variables.py
selfdrive/frogpilot/controls/lib/map_turn_speed_controller.py
selfdrive/frogpilot/controls/lib/model_manager.py
selfdrive/frogpilot/fleet_manager/fleet_manager.py
selfdrive/frogpilot/navigation/mapd.py

View File

@ -107,6 +107,8 @@ class Controls:
ignore = self.sensor_packets + ['testJoystick']
if SIMULATION:
ignore += ['driverCameraState', 'managerState']
if self.frogpilot_toggles.radarless_model:
ignore += ['radarState']
self.sm = messaging.SubMaster(['deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration',
'carOutput', 'driverMonitoringState', 'longitudinalPlan', 'liveLocationKalman',
'managerState', 'liveParameters', 'radarState', 'liveTorqueParameters',
@ -341,8 +343,9 @@ class Controls:
self.events.add(EventName.cameraFrameRate)
if not REPLAY and self.rk.lagging:
self.events.add(EventName.controlsdLagging)
if len(self.sm['radarState'].radarErrors) or (not self.rk.lagging and not self.sm.all_checks(['radarState'])):
self.events.add(EventName.radarFault)
if not self.frogpilot_toggles.radarless_model:
if len(self.sm['radarState'].radarErrors) or (not self.rk.lagging and not self.sm.all_checks(['radarState'])):
self.events.add(EventName.radarFault)
if not self.sm.valid['pandaStates']:
self.events.add(EventName.usbError)
if CS.canTimeout:

View File

@ -8,7 +8,6 @@ from openpilot.common.swaglog import cloudlog
# WARNING: imports outside of constants will not trigger a rebuild
from openpilot.selfdrive.modeld.constants import index_function
from openpilot.selfdrive.car.interfaces import ACCEL_MIN
from openpilot.selfdrive.controls.radard import _LEAD_ACCEL_TAU
if __name__ == '__main__': # generating code
from openpilot.third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver
@ -44,6 +43,8 @@ CRASH_DISTANCE = .25
LEAD_DANGER_FACTOR = 0.75
LIMIT_COST = 1e6
ACADOS_SOLVER_TYPE = 'SQP_RTI'
# Default lead acceleration decay set to 50% at 1s
LEAD_ACCEL_TAU = 1.5
# Fewer timestamps don't hurt performance and lead to
@ -335,7 +336,7 @@ class LongitudinalMpc:
x_lead = 50.0
v_lead = v_ego + 10.0
a_lead = 0.0
a_lead_tau = _LEAD_ACCEL_TAU
a_lead_tau = LEAD_ACCEL_TAU
# MPC will not converge if immediate crash is expected
# Clip lead distance to what is still possible to brake for
@ -352,13 +353,13 @@ class LongitudinalMpc:
self.cruise_min_a = min_a
self.max_a = max_a
def update(self, radarstate, v_cruise, x, v, a, j, t_follow, trafficModeActive, frogpilot_toggles, personality=log.LongitudinalPersonality.standard):
def update(self, lead_one, lead_two, v_cruise, x, v, a, j, t_follow, trafficModeActive, frogpilot_toggles, personality=log.LongitudinalPersonality.standard):
v_ego = self.x0[1]
self.status = radarstate.leadOne.status or radarstate.leadTwo.status
self.status = lead_one.status or lead_two.status
increased_distance = frogpilot_toggles.increased_stopping_distance + min(CITY_SPEED_LIMIT - v_ego, 0) if not trafficModeActive else 0
lead_xv_0 = self.process_lead(radarstate.leadOne, increased_distance)
lead_xv_1 = self.process_lead(radarstate.leadTwo)
lead_xv_0 = self.process_lead(lead_one, increased_distance)
lead_xv_1 = self.process_lead(lead_two)
# To estimate a safe distance from a moving lead, we calculate how much stopping
# distance that lead needs as a minimum. We can add that to the current distance
@ -417,8 +418,8 @@ class LongitudinalMpc:
self.params[:,4] = t_follow
self.run()
if (np.any(lead_xv_0[FCW_IDXS,0] - self.x_sol[FCW_IDXS,0] < CRASH_DISTANCE) and
radarstate.leadOne.modelProb > 0.9):
lead_probability = lead_one.prob if frogpilot_toggles.radarless_model else lead_one.modelProb
if (np.any(lead_xv_0[FCW_IDXS,0] - self.x_sol[FCW_IDXS,0] < CRASH_DISTANCE) and lead_probability > 0.9):
self.crash_cnt += 1
else:
self.crash_cnt = 0

View File

@ -6,14 +6,15 @@ from openpilot.common.numpy_fast import clip, interp
import cereal.messaging as messaging
from openpilot.common.conversions import Conversions as CV
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.simple_kalman import KF1D
from openpilot.common.realtime import DT_MDL
from openpilot.common.swaglog import cloudlog
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX
from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC, LEAD_ACCEL_TAU
from openpilot.selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, CONTROL_N, get_speed_error
from openpilot.common.swaglog import cloudlog
LON_MPC_STEP = 0.2 # first step is 0.2s
A_CRUISE_MIN = -1.2
@ -24,6 +25,9 @@ A_CRUISE_MAX_BP = [0., 10.0, 25., 40.]
_A_TOTAL_MAX_V = [1.7, 3.2]
_A_TOTAL_MAX_BP = [20., 40.]
# Kalman filter states enum
LEAD_KALMAN_SPEED, LEAD_KALMAN_ACCEL = 0, 1
def get_max_accel(v_ego):
return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
@ -44,6 +48,72 @@ def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
return [a_target[0], min(a_target[1], a_x_allowed)]
def lead_kf(v_lead: float, dt: float = 0.05):
# Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
# hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s"
A = [[1.0, dt], [0.0, 1.0]]
C = [1.0, 0.0]
#Q = np.matrix([[10., 0.0], [0.0, 100.]])
#R = 1e3
#K = np.matrix([[ 0.05705578], [ 0.03073241]])
dts = [dt * 0.01 for dt in range(1, 21)]
K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689, 0.21372394,
0.22761098, 0.24069424, 0.253096, 0.26491023, 0.27621103, 0.28705801,
0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814,
0.35353899, 0.36200124]
K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219,
0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714,
0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557,
0.26393339, 0.26278425]
K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]
kf = KF1D([[v_lead], [0.0]], A, C, K)
return kf
class Lead:
def __init__(self):
self.dRel = 0.0
self.yRel = 0.0
self.vLead = 0.0
self.aLead = 0.0
self.vLeadK = 0.0
self.aLeadK = 0.0
self.aLeadTau = LEAD_ACCEL_TAU
self.prob = 0.0
self.status = False
self.kf: KF1D | None = None
def reset(self):
self.status = False
self.kf = None
self.aLeadTau = LEAD_ACCEL_TAU
def update(self, dRel: float, yRel: float, vLead: float, aLead: float, prob: float):
self.dRel = dRel
self.yRel = yRel
self.vLead = vLead
self.aLead = aLead
self.prob = prob
self.status = True
if self.kf is None:
self.kf = lead_kf(self.vLead)
else:
self.kf.update(self.vLead)
self.vLeadK = float(self.kf.x[LEAD_KALMAN_SPEED][0])
self.aLeadK = float(self.kf.x[LEAD_KALMAN_ACCEL][0])
# Learn if constant acceleration
if abs(self.aLeadK) < 0.5:
self.aLeadTau = LEAD_ACCEL_TAU
else:
self.aLeadTau *= 0.9
class LongitudinalPlanner:
def __init__(self, CP, init_v=0.0, init_a=0.0, dt=DT_MDL):
self.CP = CP
@ -55,6 +125,9 @@ class LongitudinalPlanner:
self.v_desired_filter = FirstOrderFilter(init_v, 2.0, self.dt)
self.v_model_error = 0.0
self.lead_one = Lead()
self.lead_two = Lead()
self.v_desired_trajectory = np.zeros(CONTROL_N)
self.a_desired_trajectory = np.zeros(CONTROL_N)
self.j_desired_trajectory = np.zeros(CONTROL_N)
@ -121,11 +194,25 @@ class LongitudinalPlanner:
accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05)
accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
if frogpilot_toggles.radarless_model:
model_leads = list(sm['modelV2'].leadsV3)
# TODO lead state should be invalidated if its different point than the previous one
lead_states = [self.lead_one, self.lead_two]
for index in range(len(lead_states)):
if len(model_leads) > index:
model_lead = model_leads[index]
lead_states[index].update(model_lead.x[0], model_lead.y[0], model_lead.v[0], model_lead.a[0], model_lead.prob)
else:
lead_states[index].reset()
else:
self.lead_one = sm['radarState'].leadOne
self.lead_two = sm['radarState'].leadTwo
self.mpc.set_weights(sm['frogpilotPlan'].accelerationJerk, sm['frogpilotPlan'].speedJerk, prev_accel_constraint, personality=sm['controlsState'].personality)
self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
x, v, a, j = self.parse_model(sm['modelV2'], self.v_model_error, v_ego, frogpilot_toggles.taco_tune)
self.mpc.update(sm['radarState'], sm['frogpilotPlan'].vCruise, x, v, a, j, sm['frogpilotPlan'].tFollow,
self.mpc.update(self.lead_one, self.lead_two, sm['frogpilotPlan'].vCruise, x, v, a, j, sm['frogpilotPlan'].tFollow,
sm['frogpilotCarControl'].trafficModeActive, frogpilot_toggles, personality=sm['controlsState'].personality)
self.v_desired_trajectory_full = np.interp(ModelConstants.T_IDXS, T_IDXS_MPC, self.mpc.v_solution)
@ -157,7 +244,7 @@ class LongitudinalPlanner:
longitudinalPlan.accels = self.a_desired_trajectory.tolist()
longitudinalPlan.jerks = self.j_desired_trajectory.tolist()
longitudinalPlan.hasLead = sm['radarState'].leadOne.status
longitudinalPlan.hasLead = self.lead_one.status
longitudinalPlan.longitudinalPlanSource = self.mpc.source
longitudinalPlan.fcw = self.fcw

View File

@ -195,6 +195,8 @@ def get_lead(v_ego: float, ready: bool, tracks: dict[int, Track], lead_msg: capn
class RadarD:
def __init__(self, radar_ts: float, delay: int = 0):
self.points: dict[int, tuple[float, float, float]] = {}
self.current_time = 0.0
self.tracks: dict[int, Track] = {}
@ -206,6 +208,7 @@ class RadarD:
self.radar_state: capnp._DynamicStructBuilder | None = None
self.radar_state_valid = False
self.radar_tracks_valid = False
self.ready = False
@ -289,6 +292,31 @@ class RadarD:
}
pm.send('liveTracks', tracks_msg)
def update_radardless(self, rr: Optional[car.RadarData]):
radar_points = []
radar_errors = []
if rr is not None:
radar_points = rr.points
radar_errors = rr.errors
self.radar_tracks_valid = len(radar_errors) == 0
self.points = {}
for pt in radar_points:
self.points[pt.trackId] = (pt.dRel, pt.yRel, pt.vRel)
def publish_radardless(self):
tracks_msg = messaging.new_message('liveTracks', len(self.points))
tracks_msg.valid = self.radar_tracks_valid
for index, tid in enumerate(sorted(self.points.keys())):
tracks_msg.liveTracks[index] = {
"trackId": tid,
"dRel": float(self.points[tid][0]) + RADAR_TO_CAMERA,
"yRel": -float(self.points[tid][1]),
"vRel": float(self.points[tid][2]),
}
return tracks_msg
# fuses camera and radar data for best lead detection
def main():
@ -306,26 +334,41 @@ def main():
# *** setup messaging
can_sock = messaging.sub_sock('can')
sm = messaging.SubMaster(['modelV2', 'carState'], frequency=int(1./DT_CTRL))
pm = messaging.PubMaster(['radarState', 'liveTracks'])
pub_sock = messaging.pub_sock('liveTracks')
RI = RadarInterface(CP)
# TODO timing is different between cars, need a single time step for all cars
# TODO just take the fastest one for now, and keep resending same messages for slower radars
rk = Ratekeeper(1.0 / CP.radarTimeStep, print_delay_threshold=None)
RD = RadarD(CP.radarTimeStep, RI.delay)
while 1:
can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
rr = RI.update(can_strings)
sm.update(0)
if rr is None:
continue
if not FrogPilotVariables.toggles.radarless_model:
sm = messaging.SubMaster(['modelV2', 'carState'], frequency=int(1./DT_CTRL))
pm = messaging.PubMaster(['radarState', 'liveTracks'])
RD.update(sm, rr)
RD.publish(pm, -rk.remaining*1000.0)
while True:
can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
rr = RI.update(can_strings)
sm.update(0)
if rr is None:
continue
rk.monitor_time()
RD.update(sm, rr)
RD.publish(pm, -rk.remaining*1000.0)
rk.monitor_time()
else:
while True:
can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
rr = RI.update(can_strings)
if rr is None:
continue
RD.update_radardless(rr)
msg = RD.publish_radardless()
pub_sock.send(msg.to_bytes())
rk.monitor_time()
if __name__ == "__main__":
main()

View File

@ -52,6 +52,7 @@ class FrogPilotPlanner:
self.params_memory = Params("/dev/shm/params")
self.cem = ConditionalExperimentalMode()
self.lead_one = Lead()
self.mtsc = MapTurnSpeedController()
self.slower_lead = False
@ -63,7 +64,15 @@ class FrogPilotPlanner:
self.speed_jerk = 0
def update(self, carState, controlsState, frogpilotCarControl, frogpilotCarState, frogpilotNavigation, liveLocationKalman, modelData, radarState, frogpilot_toggles):
self.lead_one = radarState.leadOne
if frogpilot_toggles.radarless_model:
model_leads = list(modelData.leadsV3)
if len(model_leads) > 0:
model_lead = model_leads[0]
self.lead_one.update(model_lead.x[0], model_lead.y[0], model_lead.v[0], model_lead.a[0], model_lead.prob)
else:
self.lead_one.reset()
else:
self.lead_one = radarState.leadOne
v_cruise_kph = min(controlsState.vCruise, V_CRUISE_UNSET)
v_cruise = v_cruise_kph * CV.KPH_TO_MS

View File

@ -14,6 +14,7 @@ from openpilot.system.hardware import HARDWARE
from openpilot.system.version import get_short_branch, get_commit_date
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_variables import PROBABILITY, THRESHOLD
from openpilot.selfdrive.frogpilot.controls.lib.model_manager import MODELS_PATH
def calculate_lane_width(lane, current_lane, road_edge):
lane_x, lane_y = np.array(lane.x), np.array(lane.y)
@ -176,6 +177,7 @@ class FrogPilotFunctions:
remount_persist = ['sudo', 'mount', '-o', 'remount,rw', '/persist']
cls.run_cmd(remount_persist, "Successfully remounted /persist as read-write.", "Failed to remount /persist.")
os.makedirs(MODELS_PATH, exist_ok=True)
os.makedirs("/persist/params", exist_ok=True)
frogpilot_boot_logo = f'{BASEDIR}/selfdrive/frogpilot/assets/other_images/frogpilot_boot_logo.png'

View File

@ -0,0 +1,110 @@
import http.client
import os
import socket
import urllib.error
import urllib.request
from openpilot.common.params import Params
from openpilot.system.version import get_short_branch
VERSION = 'v1' if get_short_branch() == "FrogPilot" else 'v2'
GITHUB_REPOSITORY_URL = 'https://raw.githubusercontent.com/FrogAi/FrogPilot-Resources/'
GITLAB_REPOSITORY_URL = 'https://gitlab.com/FrogAi/FrogPilot-Resources/-/raw/'
DEFAULT_MODEL = "wd-40"
DEFAULT_MODEL_NAME = "WD40 (Default)"
MODELS_PATH = '/data/models'
NAVIGATION_MODELS = {"certified-herbalist", "duck-amigo", "los-angeles", "recertified-herbalist"}
RADARLESS_MODELS = {"radical-turtle"}
params = Params()
params_memory = Params("/dev/shm/params")
def ping_url(url, timeout=5):
try:
urllib.request.urlopen(url, timeout=timeout)
return True
except (urllib.error.URLError, socket.timeout, http.client.RemoteDisconnected):
return False
def determine_url(model):
if ping_url(GITHUB_REPOSITORY_URL):
return f"{GITHUB_REPOSITORY_URL}/Models/{model}.thneed"
else:
return f"{GITLAB_REPOSITORY_URL}/Models/{model}.thneed"
def delete_deprecated_models():
populate_models()
available_models = params.get("AvailableModels", encoding='utf-8').split(',')
current_model = params.get("Model", block=True, encoding='utf-8')
current_model_file = os.path.join(MODELS_PATH, f"{current_model}.thneed")
if current_model not in available_models or not os.path.exists(current_model_file):
params.put("Model", DEFAULT_MODEL)
params.put("ModelName", DEFAULT_MODEL_NAME)
for model_file in os.listdir(MODELS_PATH):
if model_file.endswith('.thneed') and model_file[:-7] not in available_models:
os.remove(os.path.join(MODELS_PATH, model_file))
def download_model():
model = params_memory.get("ModelToDownload", encoding='utf-8')
model_path = os.path.join(MODELS_PATH, f"{model}.thneed")
if os.path.exists(model_path):
print(f"Model {model} already exists, skipping download.")
return
url = determine_url(model)
for attempt in range(3):
try:
with urllib.request.urlopen(url) as f:
total_file_size = int(f.getheader('Content-Length'))
if total_file_size == 0:
raise ValueError("File is empty")
with open(model_path, 'wb') as output:
current_file_size = 0
for chunk in iter(lambda: f.read(8192), b''):
output.write(chunk)
current_file_size += len(chunk)
progress = (current_file_size / total_file_size) * 100
params_memory.put_int("ModelDownloadProgress", int(progress))
os.fsync(output)
verify_download(model_path, total_file_size)
return
except Exception as e:
handle_download_error(model_path, attempt, e, url)
def verify_download(model_path, total_file_size):
if os.path.getsize(model_path) == total_file_size:
print(f"Successfully downloaded the model!")
else:
raise Exception("Downloaded file size does not match expected size.")
def handle_download_error(model_path, attempt, exception, url):
print(f"Attempt {attempt + 1} failed with error: {exception}. Retrying...")
if os.path.exists(model_path):
os.remove(model_path)
if attempt == 2:
print(f"Failed to download the model after 3 attempts from {url}")
def populate_models():
url = f"{GITHUB_REPOSITORY_URL}Versions/model_names_{VERSION}.txt" if ping_url(GITHUB_REPOSITORY_URL) else f"{GITLAB_REPOSITORY_URL}Versions/model_names_{VERSION}.txt"
try:
with urllib.request.urlopen(url) as response:
model_info = [line.decode('utf-8').strip().split(' - ') for line in response.readlines()]
update_params(model_info)
except Exception as e:
print(f"Failed to update models list. Error: {e}")
def update_params(model_info):
available_models = ','.join(model[0] for model in model_info)
params.put("AvailableModels", available_models)
params.put("AvailableModelsNames", ','.join(model[1] for model in model_info))
print("Models list updated successfully.")

View File

@ -17,6 +17,7 @@ from openpilot.system.hardware import HARDWARE
from openpilot.selfdrive.frogpilot.controls.frogpilot_planner import FrogPilotPlanner
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_functions import FrogPilotFunctions
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_variables import FrogPilotVariables
from openpilot.selfdrive.frogpilot.controls.lib.model_manager import DEFAULT_MODEL, DEFAULT_MODEL_NAME, download_model, populate_models
WIFI = log.DeviceState.NetworkType.wifi
@ -40,6 +41,8 @@ def automatic_update_check(params):
os.system("pkill -SIGUSR1 -f selfdrive.updated.updated")
def time_checks(automatic_updates, deviceState, maps_downloaded, now, params, params_memory):
populate_models()
screen_off = deviceState.screenBrightnessPercent == 0
wifi_connection = deviceState.networkType == WIFI
@ -82,6 +85,7 @@ def frogpilot_thread(frogpilot_toggles):
first_run = True
maps_downloaded = os.path.exists('/data/media/0/osm/offline') or params.get("MapsSelected") is None
model_list_empty = params.get("AvailableModelsNames", encoding='utf-8') is None
time_validated = system_time_valid()
pm = messaging.PubMaster(['frogpilotPlan'])
@ -102,9 +106,16 @@ def frogpilot_thread(frogpilot_toggles):
sm['frogpilotNavigation'], sm['liveLocationKalman'], sm['modelV2'], sm['radarState'], frogpilot_toggles)
frogpilot_planner.publish(sm, pm, frogpilot_toggles)
if params_memory.get("ModelToDownload", encoding='utf-8') is not None:
download_model()
if FrogPilotVariables.toggles_updated:
FrogPilotVariables.update_frogpilot_params(started)
if not frogpilot_toggles.model_selector:
params.put("Model", DEFAULT_MODEL)
params.put("ModelName", DEFAULT_MODEL_NAME)
if not started and time_validated:
frogpilot_functions.backup_toggles()
@ -117,6 +128,7 @@ def frogpilot_thread(frogpilot_toggles):
if (not started or not maps_downloaded) and github_pinged():
time_checks(frogpilot_toggles.automatic_updates, deviceState, maps_downloaded, now, params, params_memory)
maps_downloaded = os.path.exists('/data/media/0/osm/offline') or params.get("OSMDownloadProgress") is not None or params.get("MapsSelected") is None
model_list_empty = params.get("AvailableModelsNames", encoding='utf-8') is None
if now.day != current_day:
params.remove("FingerprintLogged")

7
selfdrive/manager/manager.py Normal file → Executable file
View File

@ -25,6 +25,7 @@ from openpilot.system.version import is_dirty, get_commit, get_version, get_orig
is_tested_branch, is_release_branch, get_commit_date
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_functions import FrogPilotFunctions
from openpilot.selfdrive.frogpilot.controls.lib.model_manager import DEFAULT_MODEL, DEFAULT_MODEL_NAME, delete_deprecated_models
def frogpilot_boot_functions(frogpilot_functions):
@ -33,6 +34,12 @@ def frogpilot_boot_functions(frogpilot_functions):
print("Waiting for system time to become valid...")
time.sleep(1)
try:
delete_deprecated_models()
except subprocess.CalledProcessError as e:
print(f"Failed to delete deprecated models. Error: {e}")
return
try:
frogpilot_functions.backup_frogpilot()
except subprocess.CalledProcessError as e:

View File

@ -24,6 +24,7 @@ class ModelConstants:
LAT_PLANNER_STATE_LEN = 4
LATERAL_CONTROL_PARAMS_LEN = 2
PREV_DESIRED_CURV_LEN = 1
RADAR_TRACKS_LEN = 64
# model outputs constants
FCW_THRESHOLDS_5MS2 = np.array([.05, .05, .15, .15, .15], dtype=np.float32)
@ -42,6 +43,7 @@ class ModelConstants:
DESIRE_PRED_WIDTH = 8
LAT_PLANNER_SOLUTION_WIDTH = 4
DESIRED_CURV_WIDTH = 1
RADAR_TRACKS_WIDTH = 3
NUM_LANE_LINES = 4
NUM_ROAD_EDGES = 2

View File

@ -25,12 +25,18 @@ from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_variables import FrogPilotVariables
from openpilot.selfdrive.frogpilot.controls.lib.model_manager import DEFAULT_MODEL, MODELS_PATH, NAVIGATION_MODELS, RADARLESS_MODELS
PROCESS_NAME = "selfdrive.modeld.modeld"
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
MODEL_NAME = Params().get("Model", block=True, encoding='utf-8')
DISABLE_NAV = MODEL_NAME not in NAVIGATION_MODELS
DISABLE_RADAR = MODEL_NAME in RADARLESS_MODELS
MODEL_PATHS = {
ModelRunner.THNEED: Path(__file__).parent / 'models/supercombo.thneed',
ModelRunner.THNEED: Path(__file__).parent / ('models/supercombo.thneed' if MODEL_NAME == DEFAULT_MODEL else f'{MODELS_PATH}/{MODEL_NAME}.thneed'),
ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'}
METADATA_PATH = Path(__file__).parent / 'models/supercombo_metadata.pkl'
@ -61,9 +67,10 @@ class ModelState:
'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32),
'lateral_control_params': np.zeros(ModelConstants.LATERAL_CONTROL_PARAMS_LEN, dtype=np.float32),
'prev_desired_curv': np.zeros(ModelConstants.PREV_DESIRED_CURV_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32),
'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32),
**({'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32),
'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32)} if not DISABLE_NAV else {}),
'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32),
**({'radar_tracks': np.zeros(ModelConstants.RADAR_TRACKS_LEN * ModelConstants.RADAR_TRACKS_WIDTH, dtype=np.float32)} if DISABLE_RADAR else {}),
}
with open(METADATA_PATH, 'rb') as f:
@ -96,8 +103,11 @@ class ModelState:
self.inputs['traffic_convention'][:] = inputs['traffic_convention']
self.inputs['lateral_control_params'][:] = inputs['lateral_control_params']
self.inputs['nav_features'][:] = inputs['nav_features']
self.inputs['nav_instructions'][:] = inputs['nav_instructions']
if not DISABLE_NAV:
self.inputs['nav_features'][:] = inputs['nav_features']
self.inputs['nav_instructions'][:] = inputs['nav_instructions']
if DISABLE_RADAR:
self.inputs['radar_tracks'][:] = inputs['radar_tracks']
# if getCLBuffer is not None, frame will be None
self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs")))
@ -156,7 +166,7 @@ def main(demo=False, frogpilot_toggles=None):
# messaging
pm = PubMaster(["modelV2", "cameraOdometry"])
sm = SubMaster(["deviceState", "carState", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction", "carControl", "frogpilotPlan"])
sm = SubMaster(["deviceState", "carState", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction", "carControl", "liveTracks", "frogpilotPlan"])
publish_state = PublishState()
params = Params()
@ -245,7 +255,7 @@ def main(demo=False, frogpilot_toggles=None):
# Enable/disable nav features
timestamp_llk = sm["navModel"].locationMonoTime
nav_valid = sm.valid["navModel"] # and (nanos_since_boot() - timestamp_llk < 1e9)
nav_enabled = nav_valid and params.get_bool("ExperimentalMode")
nav_enabled = nav_valid and not DISABLE_NAV
if not nav_enabled:
nav_features[:] = 0
@ -266,6 +276,14 @@ def main(demo=False, frogpilot_toggles=None):
if 0 <= distance_idx < 50:
nav_instructions[distance_idx*3 + direction_idx] = 1
radar_tracks = np.zeros(ModelConstants.RADAR_TRACKS_LEN * ModelConstants.RADAR_TRACKS_WIDTH, dtype=np.float32)
if sm.updated["liveTracks"]:
for i, track in enumerate(sm["liveTracks"]):
if i >= ModelConstants.RADAR_TRACKS_LEN:
break
vec_index = i * ModelConstants.RADAR_TRACKS_WIDTH
radar_tracks[vec_index:vec_index+ModelConstants.RADAR_TRACKS_WIDTH] = [track.dRel, track.yRel, track.vRel]
# tracked dropped frames
vipc_dropped_frames = max(0, meta_main.frame_id - last_vipc_frame_id - 1)
frames_dropped = frame_dropped_filter.update(min(vipc_dropped_frames, 10))
@ -283,8 +301,9 @@ def main(demo=False, frogpilot_toggles=None):
'desire': vec_desire,
'traffic_convention': traffic_convention,
'lateral_control_params': lateral_control_params,
'nav_features': nav_features,
'nav_instructions': nav_instructions}
**({'nav_features': nav_features, 'nav_instructions': nav_instructions} if not DISABLE_NAV else {}),
**({'radar_tracks': radar_tracks,} if DISABLE_RADAR else {}),
}
mt1 = time.perf_counter()
model_output = model.run(buf_main, buf_extra, model_transform_main, model_transform_extra, inputs, prepare_only)

View File

@ -239,8 +239,10 @@ void OffroadHome::hideEvent(QHideEvent *event) {
}
void OffroadHome::refresh() {
QString model = QString::fromStdString(params.get("ModelName"));
date->setText(QLocale(uiState()->language.mid(5)).toString(QDateTime::currentDateTime(), "dddd, MMMM d"));
version->setText(getBrand() + " v" + getVersion().left(14).trimmed());
version->setText(getBrand() + " v" + getVersion().left(14).trimmed() + " - " + model);
bool updateAvailable = update_widget->refresh();
int alerts = alerts_widget->refresh();

View File

@ -623,13 +623,13 @@ void AnnotatedCameraWidget::drawDriverState(QPainter &painter, const UIState *s)
painter.restore();
}
void AnnotatedCameraWidget::drawLead(QPainter &painter, const cereal::RadarState::LeadData::Reader &lead_data, const QPointF &vd) {
void AnnotatedCameraWidget::drawLead(QPainter &painter, const cereal::ModelDataV2::LeadDataV3::Reader &lead_data, const QPointF &vd, const float v_ego) {
painter.save();
const float speedBuff = 10.;
const float leadBuff = 40.;
const float d_rel = lead_data.getDRel();
const float v_rel = lead_data.getVRel();
const float d_rel = lead_data.getX()[0];
const float v_rel = lead_data.getV()[0] - v_ego;
float fillAlpha = 0;
if (d_rel < leadBuff) {
@ -664,6 +664,7 @@ void AnnotatedCameraWidget::paintGL() {
SubMaster &sm = *(s->sm);
const double start_draw_t = millis_since_boot();
const cereal::ModelDataV2::Reader &model = sm["modelV2"].getModelV2();
const float v_ego = sm["carState"].getCarState().getVEgo();
// draw camera frame
{
@ -685,7 +686,6 @@ void AnnotatedCameraWidget::paintGL() {
// Wide or narrow cam dependent on speed
bool has_wide_cam = available_streams.count(VISION_STREAM_WIDE_ROAD);
if (has_wide_cam) {
float v_ego = sm["carState"].getCarState().getVEgo();
if ((v_ego < 10) || available_streams.size() == 1) {
wide_cam_requested = true;
} else if (v_ego > 15) {
@ -716,16 +716,16 @@ void AnnotatedCameraWidget::paintGL() {
update_model(s, model, sm["uiPlan"].getUiPlan());
drawLaneLines(painter, s);
if (s->scene.longitudinal_control && sm.rcv_frame("radarState") > s->scene.started_frame) {
auto radar_state = sm["radarState"].getRadarState();
update_leads(s, radar_state, model.getPosition());
auto lead_one = radar_state.getLeadOne();
auto lead_two = radar_state.getLeadTwo();
if (lead_one.getStatus()) {
drawLead(painter, lead_one, s->scene.lead_vertices[0]);
}
if (lead_two.getStatus() && (std::abs(lead_one.getDRel() - lead_two.getDRel()) > 3.0)) {
drawLead(painter, lead_two, s->scene.lead_vertices[1]);
if (s->scene.longitudinal_control && sm.rcv_frame("modelV2") > s->scene.started_frame) {
update_leads(s, model);
float prev_drel = -1;
for (int i = 0; i < model.getLeadsV3().size() && i < 2; i++) {
const auto &lead = model.getLeadsV3()[i];
auto lead_drel = lead.getX()[0];
if (lead.getProb() > scene.lead_detection_threshold && (prev_drel < 0 || std::abs(lead_drel - prev_drel) > 3.0)) {
drawLead(painter, lead, s->scene.lead_vertices[i], v_ego);
}
prev_drel = lead_drel;
}
}
}

View File

@ -174,7 +174,7 @@ protected:
void showEvent(QShowEvent *event) override;
void updateFrameMat() override;
void drawLaneLines(QPainter &painter, const UIState *s);
void drawLead(QPainter &painter, const cereal::RadarState::LeadData::Reader &lead_data, const QPointF &vd);
void drawLead(QPainter &painter, const cereal::ModelDataV2::LeadDataV3::Reader &lead_data, const QPointF &vd, const float v_ego);
void drawHud(QPainter &p);
void drawDriverState(QPainter &painter, const UIState *s);
inline QColor redColor(int alpha = 255) { return QColor(201, 34, 49, alpha); }

View File

@ -44,12 +44,15 @@ int get_path_length_idx(const cereal::XYZTData::Reader &line, const float path_h
return max_idx;
}
void update_leads(UIState *s, const cereal::RadarState::Reader &radar_state, const cereal::XYZTData::Reader &line) {
for (int i = 0; i < 2; ++i) {
auto lead_data = (i == 0) ? radar_state.getLeadOne() : radar_state.getLeadTwo();
if (lead_data.getStatus()) {
float z = line.getZ()[get_path_length_idx(line, lead_data.getDRel())];
calib_frame_to_full_frame(s, lead_data.getDRel(), -lead_data.getYRel(), z + 1.22, &s->scene.lead_vertices[i]);
void update_leads(UIState *s, const cereal::ModelDataV2::Reader &model_data) {
const cereal::XYZTData::Reader &line = model_data.getPosition();
for (int i = 0; i < model_data.getLeadsV3().size() && i < 2; ++i) {
const auto &lead = model_data.getLeadsV3()[i];
if (lead.getProb() > s->scene.lead_detection_threshold) {
float d_rel = lead.getX()[0];
float y_rel = lead.getY()[0];
float z = line.getZ()[get_path_length_idx(line, d_rel)];
calib_frame_to_full_frame(s, d_rel, y_rel, z + 1.22, &s->scene.lead_vertices[i]);
}
}
}
@ -108,10 +111,13 @@ void update_model(UIState *s,
}
// update path
auto lead_one = (*s->sm)["radarState"].getRadarState().getLeadOne();
if (lead_one.getStatus()) {
const float lead_d = lead_one.getDRel() * 2.;
max_distance = std::clamp((float)(lead_d - fmin(lead_d * 0.35, 10.)), 0.0f, max_distance);
auto lead_count = model.getLeadsV3().size();
if (lead_count > 0) {
auto lead_one = model.getLeadsV3()[0];
if (lead_one.getProb() > scene.lead_detection_threshold) {
const float lead_d = lead_one.getX()[0] * 2.;
max_distance = std::clamp((float)(lead_d - fmin(lead_d * 0.35, 10.)), 0.0f, max_distance);
}
}
max_idx = get_path_length_idx(plan_position, max_distance);
update_line_data(s, plan_position, 0.9, 1.22, &scene.track_vertices, max_idx, false);
@ -278,6 +284,10 @@ void ui_update_frogpilot_params(UIState *s) {
scene.use_kaofui_icons = scene.onroad_distance_button && params.getBool("KaofuiIcons");
scene.experimental_mode_via_screen = scene.longitudinal_control && params.getBool("ExperimentalModeActivation") && params.getBool("ExperimentalModeViaTap");
bool longitudinal_tune = scene.longitudinal_control && params.getBool("LongitudinalTune");
bool radarless_model = params.get("Model") == "radical-turtle";
scene.lead_detection_threshold = longitudinal_tune && !radarless_model ? params.getInt("LeadDetectionThreshold") / 100.0f : 0.5;
}
void UIState::updateStatus() {

View File

@ -205,6 +205,7 @@ typedef struct UIScene {
bool use_kaofui_icons;
float adjusted_cruise;
float lead_detection_threshold;
int alert_size;
int conditional_speed;
@ -303,7 +304,7 @@ void update_model(UIState *s,
const cereal::ModelDataV2::Reader &model,
const cereal::UiPlan::Reader &plan);
void update_dmonitoring(UIState *s, const cereal::DriverStateV2::Reader &driverstate, float dm_fade_state, bool is_rhd);
void update_leads(UIState *s, const cereal::RadarState::Reader &radar_state, const cereal::XYZTData::Reader &line);
void update_leads(UIState *s, const cereal::ModelDataV2::Reader &model_data);
void update_line_data(const UIState *s, const cereal::XYZTData::Reader &line,
float y_off, float z_off, QPolygonF *pvd, int max_idx, bool allow_invert);