Controls - Model Selector
Manage openpilot's driving models.
This commit is contained in:
parent
4fea7c0d28
commit
78638715cd
@ -571,5 +571,6 @@ selfdrive/frogpilot/controls/lib/conditional_experimental_mode.py
|
||||
selfdrive/frogpilot/controls/lib/frogpilot_functions.py
|
||||
selfdrive/frogpilot/controls/lib/frogpilot_variables.py
|
||||
selfdrive/frogpilot/controls/lib/map_turn_speed_controller.py
|
||||
selfdrive/frogpilot/controls/lib/model_manager.py
|
||||
selfdrive/frogpilot/fleet_manager/fleet_manager.py
|
||||
selfdrive/frogpilot/navigation/mapd.py
|
||||
|
@ -107,6 +107,8 @@ class Controls:
|
||||
ignore = self.sensor_packets + ['testJoystick']
|
||||
if SIMULATION:
|
||||
ignore += ['driverCameraState', 'managerState']
|
||||
if self.frogpilot_toggles.radarless_model:
|
||||
ignore += ['radarState']
|
||||
self.sm = messaging.SubMaster(['deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration',
|
||||
'carOutput', 'driverMonitoringState', 'longitudinalPlan', 'liveLocationKalman',
|
||||
'managerState', 'liveParameters', 'radarState', 'liveTorqueParameters',
|
||||
@ -341,8 +343,9 @@ class Controls:
|
||||
self.events.add(EventName.cameraFrameRate)
|
||||
if not REPLAY and self.rk.lagging:
|
||||
self.events.add(EventName.controlsdLagging)
|
||||
if len(self.sm['radarState'].radarErrors) or (not self.rk.lagging and not self.sm.all_checks(['radarState'])):
|
||||
self.events.add(EventName.radarFault)
|
||||
if not self.frogpilot_toggles.radarless_model:
|
||||
if len(self.sm['radarState'].radarErrors) or (not self.rk.lagging and not self.sm.all_checks(['radarState'])):
|
||||
self.events.add(EventName.radarFault)
|
||||
if not self.sm.valid['pandaStates']:
|
||||
self.events.add(EventName.usbError)
|
||||
if CS.canTimeout:
|
||||
|
@ -8,7 +8,6 @@ from openpilot.common.swaglog import cloudlog
|
||||
# WARNING: imports outside of constants will not trigger a rebuild
|
||||
from openpilot.selfdrive.modeld.constants import index_function
|
||||
from openpilot.selfdrive.car.interfaces import ACCEL_MIN
|
||||
from openpilot.selfdrive.controls.radard import _LEAD_ACCEL_TAU
|
||||
|
||||
if __name__ == '__main__': # generating code
|
||||
from openpilot.third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver
|
||||
@ -44,6 +43,8 @@ CRASH_DISTANCE = .25
|
||||
LEAD_DANGER_FACTOR = 0.75
|
||||
LIMIT_COST = 1e6
|
||||
ACADOS_SOLVER_TYPE = 'SQP_RTI'
|
||||
# Default lead acceleration decay set to 50% at 1s
|
||||
LEAD_ACCEL_TAU = 1.5
|
||||
|
||||
|
||||
# Fewer timestamps don't hurt performance and lead to
|
||||
@ -335,7 +336,7 @@ class LongitudinalMpc:
|
||||
x_lead = 50.0
|
||||
v_lead = v_ego + 10.0
|
||||
a_lead = 0.0
|
||||
a_lead_tau = _LEAD_ACCEL_TAU
|
||||
a_lead_tau = LEAD_ACCEL_TAU
|
||||
|
||||
# MPC will not converge if immediate crash is expected
|
||||
# Clip lead distance to what is still possible to brake for
|
||||
@ -352,13 +353,13 @@ class LongitudinalMpc:
|
||||
self.cruise_min_a = min_a
|
||||
self.max_a = max_a
|
||||
|
||||
def update(self, radarstate, v_cruise, x, v, a, j, t_follow, trafficModeActive, frogpilot_toggles, personality=log.LongitudinalPersonality.standard):
|
||||
def update(self, lead_one, lead_two, v_cruise, x, v, a, j, t_follow, trafficModeActive, frogpilot_toggles, personality=log.LongitudinalPersonality.standard):
|
||||
v_ego = self.x0[1]
|
||||
self.status = radarstate.leadOne.status or radarstate.leadTwo.status
|
||||
self.status = lead_one.status or lead_two.status
|
||||
increased_distance = frogpilot_toggles.increased_stopping_distance + min(CITY_SPEED_LIMIT - v_ego, 0) if not trafficModeActive else 0
|
||||
|
||||
lead_xv_0 = self.process_lead(radarstate.leadOne, increased_distance)
|
||||
lead_xv_1 = self.process_lead(radarstate.leadTwo)
|
||||
lead_xv_0 = self.process_lead(lead_one, increased_distance)
|
||||
lead_xv_1 = self.process_lead(lead_two)
|
||||
|
||||
# To estimate a safe distance from a moving lead, we calculate how much stopping
|
||||
# distance that lead needs as a minimum. We can add that to the current distance
|
||||
@ -417,8 +418,8 @@ class LongitudinalMpc:
|
||||
self.params[:,4] = t_follow
|
||||
|
||||
self.run()
|
||||
if (np.any(lead_xv_0[FCW_IDXS,0] - self.x_sol[FCW_IDXS,0] < CRASH_DISTANCE) and
|
||||
radarstate.leadOne.modelProb > 0.9):
|
||||
lead_probability = lead_one.prob if frogpilot_toggles.radarless_model else lead_one.modelProb
|
||||
if (np.any(lead_xv_0[FCW_IDXS,0] - self.x_sol[FCW_IDXS,0] < CRASH_DISTANCE) and lead_probability > 0.9):
|
||||
self.crash_cnt += 1
|
||||
else:
|
||||
self.crash_cnt = 0
|
||||
|
@ -6,14 +6,15 @@ from openpilot.common.numpy_fast import clip, interp
|
||||
import cereal.messaging as messaging
|
||||
from openpilot.common.conversions import Conversions as CV
|
||||
from openpilot.common.filter_simple import FirstOrderFilter
|
||||
from openpilot.common.simple_kalman import KF1D
|
||||
from openpilot.common.realtime import DT_MDL
|
||||
from openpilot.common.swaglog import cloudlog
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
from openpilot.selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX
|
||||
from openpilot.selfdrive.controls.lib.longcontrol import LongCtrlState
|
||||
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc
|
||||
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
|
||||
from openpilot.selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC, LEAD_ACCEL_TAU
|
||||
from openpilot.selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, CONTROL_N, get_speed_error
|
||||
from openpilot.common.swaglog import cloudlog
|
||||
|
||||
LON_MPC_STEP = 0.2 # first step is 0.2s
|
||||
A_CRUISE_MIN = -1.2
|
||||
@ -24,6 +25,9 @@ A_CRUISE_MAX_BP = [0., 10.0, 25., 40.]
|
||||
_A_TOTAL_MAX_V = [1.7, 3.2]
|
||||
_A_TOTAL_MAX_BP = [20., 40.]
|
||||
|
||||
# Kalman filter states enum
|
||||
LEAD_KALMAN_SPEED, LEAD_KALMAN_ACCEL = 0, 1
|
||||
|
||||
|
||||
def get_max_accel(v_ego):
|
||||
return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
|
||||
@ -44,6 +48,72 @@ def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
|
||||
return [a_target[0], min(a_target[1], a_x_allowed)]
|
||||
|
||||
|
||||
def lead_kf(v_lead: float, dt: float = 0.05):
|
||||
# Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
|
||||
# hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
|
||||
assert dt > .01 and dt < .2, "Radar time step must be between .01s and 0.2s"
|
||||
A = [[1.0, dt], [0.0, 1.0]]
|
||||
C = [1.0, 0.0]
|
||||
#Q = np.matrix([[10., 0.0], [0.0, 100.]])
|
||||
#R = 1e3
|
||||
#K = np.matrix([[ 0.05705578], [ 0.03073241]])
|
||||
dts = [dt * 0.01 for dt in range(1, 21)]
|
||||
K0 = [0.12287673, 0.14556536, 0.16522756, 0.18281627, 0.1988689, 0.21372394,
|
||||
0.22761098, 0.24069424, 0.253096, 0.26491023, 0.27621103, 0.28705801,
|
||||
0.29750003, 0.30757767, 0.31732515, 0.32677158, 0.33594201, 0.34485814,
|
||||
0.35353899, 0.36200124]
|
||||
K1 = [0.29666309, 0.29330885, 0.29042818, 0.28787125, 0.28555364, 0.28342219,
|
||||
0.28144091, 0.27958406, 0.27783249, 0.27617149, 0.27458948, 0.27307714,
|
||||
0.27162685, 0.27023228, 0.26888809, 0.26758976, 0.26633338, 0.26511557,
|
||||
0.26393339, 0.26278425]
|
||||
K = [[interp(dt, dts, K0)], [interp(dt, dts, K1)]]
|
||||
|
||||
kf = KF1D([[v_lead], [0.0]], A, C, K)
|
||||
return kf
|
||||
|
||||
|
||||
class Lead:
|
||||
def __init__(self):
|
||||
self.dRel = 0.0
|
||||
self.yRel = 0.0
|
||||
self.vLead = 0.0
|
||||
self.aLead = 0.0
|
||||
self.vLeadK = 0.0
|
||||
self.aLeadK = 0.0
|
||||
self.aLeadTau = LEAD_ACCEL_TAU
|
||||
self.prob = 0.0
|
||||
self.status = False
|
||||
|
||||
self.kf: KF1D | None = None
|
||||
|
||||
def reset(self):
|
||||
self.status = False
|
||||
self.kf = None
|
||||
self.aLeadTau = LEAD_ACCEL_TAU
|
||||
|
||||
def update(self, dRel: float, yRel: float, vLead: float, aLead: float, prob: float):
|
||||
self.dRel = dRel
|
||||
self.yRel = yRel
|
||||
self.vLead = vLead
|
||||
self.aLead = aLead
|
||||
self.prob = prob
|
||||
self.status = True
|
||||
|
||||
if self.kf is None:
|
||||
self.kf = lead_kf(self.vLead)
|
||||
else:
|
||||
self.kf.update(self.vLead)
|
||||
|
||||
self.vLeadK = float(self.kf.x[LEAD_KALMAN_SPEED][0])
|
||||
self.aLeadK = float(self.kf.x[LEAD_KALMAN_ACCEL][0])
|
||||
|
||||
# Learn if constant acceleration
|
||||
if abs(self.aLeadK) < 0.5:
|
||||
self.aLeadTau = LEAD_ACCEL_TAU
|
||||
else:
|
||||
self.aLeadTau *= 0.9
|
||||
|
||||
|
||||
class LongitudinalPlanner:
|
||||
def __init__(self, CP, init_v=0.0, init_a=0.0, dt=DT_MDL):
|
||||
self.CP = CP
|
||||
@ -55,6 +125,9 @@ class LongitudinalPlanner:
|
||||
self.v_desired_filter = FirstOrderFilter(init_v, 2.0, self.dt)
|
||||
self.v_model_error = 0.0
|
||||
|
||||
self.lead_one = Lead()
|
||||
self.lead_two = Lead()
|
||||
|
||||
self.v_desired_trajectory = np.zeros(CONTROL_N)
|
||||
self.a_desired_trajectory = np.zeros(CONTROL_N)
|
||||
self.j_desired_trajectory = np.zeros(CONTROL_N)
|
||||
@ -121,11 +194,25 @@ class LongitudinalPlanner:
|
||||
accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05)
|
||||
accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
|
||||
|
||||
if frogpilot_toggles.radarless_model:
|
||||
model_leads = list(sm['modelV2'].leadsV3)
|
||||
# TODO lead state should be invalidated if its different point than the previous one
|
||||
lead_states = [self.lead_one, self.lead_two]
|
||||
for index in range(len(lead_states)):
|
||||
if len(model_leads) > index:
|
||||
model_lead = model_leads[index]
|
||||
lead_states[index].update(model_lead.x[0], model_lead.y[0], model_lead.v[0], model_lead.a[0], model_lead.prob)
|
||||
else:
|
||||
lead_states[index].reset()
|
||||
else:
|
||||
self.lead_one = sm['radarState'].leadOne
|
||||
self.lead_two = sm['radarState'].leadTwo
|
||||
|
||||
self.mpc.set_weights(sm['frogpilotPlan'].accelerationJerk, sm['frogpilotPlan'].speedJerk, prev_accel_constraint, personality=sm['controlsState'].personality)
|
||||
self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
|
||||
self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
|
||||
x, v, a, j = self.parse_model(sm['modelV2'], self.v_model_error, v_ego, frogpilot_toggles.taco_tune)
|
||||
self.mpc.update(sm['radarState'], sm['frogpilotPlan'].vCruise, x, v, a, j, sm['frogpilotPlan'].tFollow,
|
||||
self.mpc.update(self.lead_one, self.lead_two, sm['frogpilotPlan'].vCruise, x, v, a, j, sm['frogpilotPlan'].tFollow,
|
||||
sm['frogpilotCarControl'].trafficModeActive, frogpilot_toggles, personality=sm['controlsState'].personality)
|
||||
|
||||
self.v_desired_trajectory_full = np.interp(ModelConstants.T_IDXS, T_IDXS_MPC, self.mpc.v_solution)
|
||||
@ -157,7 +244,7 @@ class LongitudinalPlanner:
|
||||
longitudinalPlan.accels = self.a_desired_trajectory.tolist()
|
||||
longitudinalPlan.jerks = self.j_desired_trajectory.tolist()
|
||||
|
||||
longitudinalPlan.hasLead = sm['radarState'].leadOne.status
|
||||
longitudinalPlan.hasLead = self.lead_one.status
|
||||
longitudinalPlan.longitudinalPlanSource = self.mpc.source
|
||||
longitudinalPlan.fcw = self.fcw
|
||||
|
||||
|
@ -195,6 +195,8 @@ def get_lead(v_ego: float, ready: bool, tracks: dict[int, Track], lead_msg: capn
|
||||
|
||||
class RadarD:
|
||||
def __init__(self, radar_ts: float, delay: int = 0):
|
||||
self.points: dict[int, tuple[float, float, float]] = {}
|
||||
|
||||
self.current_time = 0.0
|
||||
|
||||
self.tracks: dict[int, Track] = {}
|
||||
@ -206,6 +208,7 @@ class RadarD:
|
||||
|
||||
self.radar_state: capnp._DynamicStructBuilder | None = None
|
||||
self.radar_state_valid = False
|
||||
self.radar_tracks_valid = False
|
||||
|
||||
self.ready = False
|
||||
|
||||
@ -289,6 +292,31 @@ class RadarD:
|
||||
}
|
||||
pm.send('liveTracks', tracks_msg)
|
||||
|
||||
def update_radardless(self, rr: Optional[car.RadarData]):
|
||||
radar_points = []
|
||||
radar_errors = []
|
||||
if rr is not None:
|
||||
radar_points = rr.points
|
||||
radar_errors = rr.errors
|
||||
|
||||
self.radar_tracks_valid = len(radar_errors) == 0
|
||||
|
||||
self.points = {}
|
||||
for pt in radar_points:
|
||||
self.points[pt.trackId] = (pt.dRel, pt.yRel, pt.vRel)
|
||||
|
||||
def publish_radardless(self):
|
||||
tracks_msg = messaging.new_message('liveTracks', len(self.points))
|
||||
tracks_msg.valid = self.radar_tracks_valid
|
||||
for index, tid in enumerate(sorted(self.points.keys())):
|
||||
tracks_msg.liveTracks[index] = {
|
||||
"trackId": tid,
|
||||
"dRel": float(self.points[tid][0]) + RADAR_TO_CAMERA,
|
||||
"yRel": -float(self.points[tid][1]),
|
||||
"vRel": float(self.points[tid][2]),
|
||||
}
|
||||
|
||||
return tracks_msg
|
||||
|
||||
# fuses camera and radar data for best lead detection
|
||||
def main():
|
||||
@ -306,26 +334,41 @@ def main():
|
||||
|
||||
# *** setup messaging
|
||||
can_sock = messaging.sub_sock('can')
|
||||
sm = messaging.SubMaster(['modelV2', 'carState'], frequency=int(1./DT_CTRL))
|
||||
pm = messaging.PubMaster(['radarState', 'liveTracks'])
|
||||
pub_sock = messaging.pub_sock('liveTracks')
|
||||
|
||||
RI = RadarInterface(CP)
|
||||
|
||||
# TODO timing is different between cars, need a single time step for all cars
|
||||
# TODO just take the fastest one for now, and keep resending same messages for slower radars
|
||||
rk = Ratekeeper(1.0 / CP.radarTimeStep, print_delay_threshold=None)
|
||||
RD = RadarD(CP.radarTimeStep, RI.delay)
|
||||
|
||||
while 1:
|
||||
can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
|
||||
rr = RI.update(can_strings)
|
||||
sm.update(0)
|
||||
if rr is None:
|
||||
continue
|
||||
if not FrogPilotVariables.toggles.radarless_model:
|
||||
sm = messaging.SubMaster(['modelV2', 'carState'], frequency=int(1./DT_CTRL))
|
||||
pm = messaging.PubMaster(['radarState', 'liveTracks'])
|
||||
|
||||
RD.update(sm, rr)
|
||||
RD.publish(pm, -rk.remaining*1000.0)
|
||||
while True:
|
||||
can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
|
||||
rr = RI.update(can_strings)
|
||||
sm.update(0)
|
||||
if rr is None:
|
||||
continue
|
||||
|
||||
rk.monitor_time()
|
||||
RD.update(sm, rr)
|
||||
RD.publish(pm, -rk.remaining*1000.0)
|
||||
rk.monitor_time()
|
||||
else:
|
||||
while True:
|
||||
can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
|
||||
rr = RI.update(can_strings)
|
||||
if rr is None:
|
||||
continue
|
||||
|
||||
RD.update_radardless(rr)
|
||||
msg = RD.publish_radardless()
|
||||
pub_sock.send(msg.to_bytes())
|
||||
|
||||
rk.monitor_time()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -52,6 +52,7 @@ class FrogPilotPlanner:
|
||||
self.params_memory = Params("/dev/shm/params")
|
||||
|
||||
self.cem = ConditionalExperimentalMode()
|
||||
self.lead_one = Lead()
|
||||
self.mtsc = MapTurnSpeedController()
|
||||
|
||||
self.slower_lead = False
|
||||
@ -63,7 +64,15 @@ class FrogPilotPlanner:
|
||||
self.speed_jerk = 0
|
||||
|
||||
def update(self, carState, controlsState, frogpilotCarControl, frogpilotCarState, frogpilotNavigation, liveLocationKalman, modelData, radarState, frogpilot_toggles):
|
||||
self.lead_one = radarState.leadOne
|
||||
if frogpilot_toggles.radarless_model:
|
||||
model_leads = list(modelData.leadsV3)
|
||||
if len(model_leads) > 0:
|
||||
model_lead = model_leads[0]
|
||||
self.lead_one.update(model_lead.x[0], model_lead.y[0], model_lead.v[0], model_lead.a[0], model_lead.prob)
|
||||
else:
|
||||
self.lead_one.reset()
|
||||
else:
|
||||
self.lead_one = radarState.leadOne
|
||||
|
||||
v_cruise_kph = min(controlsState.vCruise, V_CRUISE_UNSET)
|
||||
v_cruise = v_cruise_kph * CV.KPH_TO_MS
|
||||
|
@ -14,6 +14,7 @@ from openpilot.system.hardware import HARDWARE
|
||||
from openpilot.system.version import get_short_branch, get_commit_date
|
||||
|
||||
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_variables import PROBABILITY, THRESHOLD
|
||||
from openpilot.selfdrive.frogpilot.controls.lib.model_manager import MODELS_PATH
|
||||
|
||||
def calculate_lane_width(lane, current_lane, road_edge):
|
||||
lane_x, lane_y = np.array(lane.x), np.array(lane.y)
|
||||
@ -176,6 +177,7 @@ class FrogPilotFunctions:
|
||||
remount_persist = ['sudo', 'mount', '-o', 'remount,rw', '/persist']
|
||||
cls.run_cmd(remount_persist, "Successfully remounted /persist as read-write.", "Failed to remount /persist.")
|
||||
|
||||
os.makedirs(MODELS_PATH, exist_ok=True)
|
||||
os.makedirs("/persist/params", exist_ok=True)
|
||||
|
||||
frogpilot_boot_logo = f'{BASEDIR}/selfdrive/frogpilot/assets/other_images/frogpilot_boot_logo.png'
|
||||
|
110
selfdrive/frogpilot/controls/lib/model_manager.py
Normal file
110
selfdrive/frogpilot/controls/lib/model_manager.py
Normal file
@ -0,0 +1,110 @@
|
||||
import http.client
|
||||
import os
|
||||
import socket
|
||||
import urllib.error
|
||||
import urllib.request
|
||||
|
||||
from openpilot.common.params import Params
|
||||
from openpilot.system.version import get_short_branch
|
||||
|
||||
VERSION = 'v1' if get_short_branch() == "FrogPilot" else 'v2'
|
||||
GITHUB_REPOSITORY_URL = 'https://raw.githubusercontent.com/FrogAi/FrogPilot-Resources/'
|
||||
GITLAB_REPOSITORY_URL = 'https://gitlab.com/FrogAi/FrogPilot-Resources/-/raw/'
|
||||
|
||||
DEFAULT_MODEL = "wd-40"
|
||||
DEFAULT_MODEL_NAME = "WD40 (Default)"
|
||||
MODELS_PATH = '/data/models'
|
||||
|
||||
NAVIGATION_MODELS = {"certified-herbalist", "duck-amigo", "los-angeles", "recertified-herbalist"}
|
||||
RADARLESS_MODELS = {"radical-turtle"}
|
||||
|
||||
params = Params()
|
||||
params_memory = Params("/dev/shm/params")
|
||||
|
||||
def ping_url(url, timeout=5):
|
||||
try:
|
||||
urllib.request.urlopen(url, timeout=timeout)
|
||||
return True
|
||||
except (urllib.error.URLError, socket.timeout, http.client.RemoteDisconnected):
|
||||
return False
|
||||
|
||||
def determine_url(model):
|
||||
if ping_url(GITHUB_REPOSITORY_URL):
|
||||
return f"{GITHUB_REPOSITORY_URL}/Models/{model}.thneed"
|
||||
else:
|
||||
return f"{GITLAB_REPOSITORY_URL}/Models/{model}.thneed"
|
||||
|
||||
def delete_deprecated_models():
|
||||
populate_models()
|
||||
|
||||
available_models = params.get("AvailableModels", encoding='utf-8').split(',')
|
||||
|
||||
current_model = params.get("Model", block=True, encoding='utf-8')
|
||||
current_model_file = os.path.join(MODELS_PATH, f"{current_model}.thneed")
|
||||
|
||||
if current_model not in available_models or not os.path.exists(current_model_file):
|
||||
params.put("Model", DEFAULT_MODEL)
|
||||
params.put("ModelName", DEFAULT_MODEL_NAME)
|
||||
|
||||
for model_file in os.listdir(MODELS_PATH):
|
||||
if model_file.endswith('.thneed') and model_file[:-7] not in available_models:
|
||||
os.remove(os.path.join(MODELS_PATH, model_file))
|
||||
|
||||
def download_model():
|
||||
model = params_memory.get("ModelToDownload", encoding='utf-8')
|
||||
model_path = os.path.join(MODELS_PATH, f"{model}.thneed")
|
||||
|
||||
if os.path.exists(model_path):
|
||||
print(f"Model {model} already exists, skipping download.")
|
||||
return
|
||||
|
||||
url = determine_url(model)
|
||||
|
||||
for attempt in range(3):
|
||||
try:
|
||||
with urllib.request.urlopen(url) as f:
|
||||
total_file_size = int(f.getheader('Content-Length'))
|
||||
if total_file_size == 0:
|
||||
raise ValueError("File is empty")
|
||||
|
||||
with open(model_path, 'wb') as output:
|
||||
current_file_size = 0
|
||||
for chunk in iter(lambda: f.read(8192), b''):
|
||||
output.write(chunk)
|
||||
current_file_size += len(chunk)
|
||||
progress = (current_file_size / total_file_size) * 100
|
||||
params_memory.put_int("ModelDownloadProgress", int(progress))
|
||||
os.fsync(output)
|
||||
|
||||
verify_download(model_path, total_file_size)
|
||||
return
|
||||
except Exception as e:
|
||||
handle_download_error(model_path, attempt, e, url)
|
||||
|
||||
def verify_download(model_path, total_file_size):
|
||||
if os.path.getsize(model_path) == total_file_size:
|
||||
print(f"Successfully downloaded the model!")
|
||||
else:
|
||||
raise Exception("Downloaded file size does not match expected size.")
|
||||
|
||||
def handle_download_error(model_path, attempt, exception, url):
|
||||
print(f"Attempt {attempt + 1} failed with error: {exception}. Retrying...")
|
||||
if os.path.exists(model_path):
|
||||
os.remove(model_path)
|
||||
if attempt == 2:
|
||||
print(f"Failed to download the model after 3 attempts from {url}")
|
||||
|
||||
def populate_models():
|
||||
url = f"{GITHUB_REPOSITORY_URL}Versions/model_names_{VERSION}.txt" if ping_url(GITHUB_REPOSITORY_URL) else f"{GITLAB_REPOSITORY_URL}Versions/model_names_{VERSION}.txt"
|
||||
try:
|
||||
with urllib.request.urlopen(url) as response:
|
||||
model_info = [line.decode('utf-8').strip().split(' - ') for line in response.readlines()]
|
||||
update_params(model_info)
|
||||
except Exception as e:
|
||||
print(f"Failed to update models list. Error: {e}")
|
||||
|
||||
def update_params(model_info):
|
||||
available_models = ','.join(model[0] for model in model_info)
|
||||
params.put("AvailableModels", available_models)
|
||||
params.put("AvailableModelsNames", ','.join(model[1] for model in model_info))
|
||||
print("Models list updated successfully.")
|
@ -17,6 +17,7 @@ from openpilot.system.hardware import HARDWARE
|
||||
from openpilot.selfdrive.frogpilot.controls.frogpilot_planner import FrogPilotPlanner
|
||||
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_functions import FrogPilotFunctions
|
||||
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_variables import FrogPilotVariables
|
||||
from openpilot.selfdrive.frogpilot.controls.lib.model_manager import DEFAULT_MODEL, DEFAULT_MODEL_NAME, download_model, populate_models
|
||||
|
||||
WIFI = log.DeviceState.NetworkType.wifi
|
||||
|
||||
@ -40,6 +41,8 @@ def automatic_update_check(params):
|
||||
os.system("pkill -SIGUSR1 -f selfdrive.updated.updated")
|
||||
|
||||
def time_checks(automatic_updates, deviceState, maps_downloaded, now, params, params_memory):
|
||||
populate_models()
|
||||
|
||||
screen_off = deviceState.screenBrightnessPercent == 0
|
||||
wifi_connection = deviceState.networkType == WIFI
|
||||
|
||||
@ -82,6 +85,7 @@ def frogpilot_thread(frogpilot_toggles):
|
||||
|
||||
first_run = True
|
||||
maps_downloaded = os.path.exists('/data/media/0/osm/offline') or params.get("MapsSelected") is None
|
||||
model_list_empty = params.get("AvailableModelsNames", encoding='utf-8') is None
|
||||
time_validated = system_time_valid()
|
||||
|
||||
pm = messaging.PubMaster(['frogpilotPlan'])
|
||||
@ -102,9 +106,16 @@ def frogpilot_thread(frogpilot_toggles):
|
||||
sm['frogpilotNavigation'], sm['liveLocationKalman'], sm['modelV2'], sm['radarState'], frogpilot_toggles)
|
||||
frogpilot_planner.publish(sm, pm, frogpilot_toggles)
|
||||
|
||||
if params_memory.get("ModelToDownload", encoding='utf-8') is not None:
|
||||
download_model()
|
||||
|
||||
if FrogPilotVariables.toggles_updated:
|
||||
FrogPilotVariables.update_frogpilot_params(started)
|
||||
|
||||
if not frogpilot_toggles.model_selector:
|
||||
params.put("Model", DEFAULT_MODEL)
|
||||
params.put("ModelName", DEFAULT_MODEL_NAME)
|
||||
|
||||
if not started and time_validated:
|
||||
frogpilot_functions.backup_toggles()
|
||||
|
||||
@ -117,6 +128,7 @@ def frogpilot_thread(frogpilot_toggles):
|
||||
if (not started or not maps_downloaded) and github_pinged():
|
||||
time_checks(frogpilot_toggles.automatic_updates, deviceState, maps_downloaded, now, params, params_memory)
|
||||
maps_downloaded = os.path.exists('/data/media/0/osm/offline') or params.get("OSMDownloadProgress") is not None or params.get("MapsSelected") is None
|
||||
model_list_empty = params.get("AvailableModelsNames", encoding='utf-8') is None
|
||||
|
||||
if now.day != current_day:
|
||||
params.remove("FingerprintLogged")
|
||||
|
7
selfdrive/manager/manager.py
Normal file → Executable file
7
selfdrive/manager/manager.py
Normal file → Executable file
@ -25,6 +25,7 @@ from openpilot.system.version import is_dirty, get_commit, get_version, get_orig
|
||||
is_tested_branch, is_release_branch, get_commit_date
|
||||
|
||||
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_functions import FrogPilotFunctions
|
||||
from openpilot.selfdrive.frogpilot.controls.lib.model_manager import DEFAULT_MODEL, DEFAULT_MODEL_NAME, delete_deprecated_models
|
||||
|
||||
|
||||
def frogpilot_boot_functions(frogpilot_functions):
|
||||
@ -33,6 +34,12 @@ def frogpilot_boot_functions(frogpilot_functions):
|
||||
print("Waiting for system time to become valid...")
|
||||
time.sleep(1)
|
||||
|
||||
try:
|
||||
delete_deprecated_models()
|
||||
except subprocess.CalledProcessError as e:
|
||||
print(f"Failed to delete deprecated models. Error: {e}")
|
||||
return
|
||||
|
||||
try:
|
||||
frogpilot_functions.backup_frogpilot()
|
||||
except subprocess.CalledProcessError as e:
|
||||
|
@ -24,6 +24,7 @@ class ModelConstants:
|
||||
LAT_PLANNER_STATE_LEN = 4
|
||||
LATERAL_CONTROL_PARAMS_LEN = 2
|
||||
PREV_DESIRED_CURV_LEN = 1
|
||||
RADAR_TRACKS_LEN = 64
|
||||
|
||||
# model outputs constants
|
||||
FCW_THRESHOLDS_5MS2 = np.array([.05, .05, .15, .15, .15], dtype=np.float32)
|
||||
@ -42,6 +43,7 @@ class ModelConstants:
|
||||
DESIRE_PRED_WIDTH = 8
|
||||
LAT_PLANNER_SOLUTION_WIDTH = 4
|
||||
DESIRED_CURV_WIDTH = 1
|
||||
RADAR_TRACKS_WIDTH = 3
|
||||
|
||||
NUM_LANE_LINES = 4
|
||||
NUM_ROAD_EDGES = 2
|
||||
|
@ -25,12 +25,18 @@ from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext
|
||||
|
||||
from openpilot.selfdrive.frogpilot.controls.lib.frogpilot_variables import FrogPilotVariables
|
||||
from openpilot.selfdrive.frogpilot.controls.lib.model_manager import DEFAULT_MODEL, MODELS_PATH, NAVIGATION_MODELS, RADARLESS_MODELS
|
||||
|
||||
PROCESS_NAME = "selfdrive.modeld.modeld"
|
||||
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
|
||||
|
||||
MODEL_NAME = Params().get("Model", block=True, encoding='utf-8')
|
||||
|
||||
DISABLE_NAV = MODEL_NAME not in NAVIGATION_MODELS
|
||||
DISABLE_RADAR = MODEL_NAME in RADARLESS_MODELS
|
||||
|
||||
MODEL_PATHS = {
|
||||
ModelRunner.THNEED: Path(__file__).parent / 'models/supercombo.thneed',
|
||||
ModelRunner.THNEED: Path(__file__).parent / ('models/supercombo.thneed' if MODEL_NAME == DEFAULT_MODEL else f'{MODELS_PATH}/{MODEL_NAME}.thneed'),
|
||||
ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'}
|
||||
|
||||
METADATA_PATH = Path(__file__).parent / 'models/supercombo_metadata.pkl'
|
||||
@ -61,9 +67,10 @@ class ModelState:
|
||||
'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32),
|
||||
'lateral_control_params': np.zeros(ModelConstants.LATERAL_CONTROL_PARAMS_LEN, dtype=np.float32),
|
||||
'prev_desired_curv': np.zeros(ModelConstants.PREV_DESIRED_CURV_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
|
||||
'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32),
|
||||
'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32),
|
||||
**({'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32),
|
||||
'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32)} if not DISABLE_NAV else {}),
|
||||
'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32),
|
||||
**({'radar_tracks': np.zeros(ModelConstants.RADAR_TRACKS_LEN * ModelConstants.RADAR_TRACKS_WIDTH, dtype=np.float32)} if DISABLE_RADAR else {}),
|
||||
}
|
||||
|
||||
with open(METADATA_PATH, 'rb') as f:
|
||||
@ -96,8 +103,11 @@ class ModelState:
|
||||
|
||||
self.inputs['traffic_convention'][:] = inputs['traffic_convention']
|
||||
self.inputs['lateral_control_params'][:] = inputs['lateral_control_params']
|
||||
self.inputs['nav_features'][:] = inputs['nav_features']
|
||||
self.inputs['nav_instructions'][:] = inputs['nav_instructions']
|
||||
if not DISABLE_NAV:
|
||||
self.inputs['nav_features'][:] = inputs['nav_features']
|
||||
self.inputs['nav_instructions'][:] = inputs['nav_instructions']
|
||||
if DISABLE_RADAR:
|
||||
self.inputs['radar_tracks'][:] = inputs['radar_tracks']
|
||||
|
||||
# if getCLBuffer is not None, frame will be None
|
||||
self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs")))
|
||||
@ -156,7 +166,7 @@ def main(demo=False, frogpilot_toggles=None):
|
||||
|
||||
# messaging
|
||||
pm = PubMaster(["modelV2", "cameraOdometry"])
|
||||
sm = SubMaster(["deviceState", "carState", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction", "carControl", "frogpilotPlan"])
|
||||
sm = SubMaster(["deviceState", "carState", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction", "carControl", "liveTracks", "frogpilotPlan"])
|
||||
|
||||
publish_state = PublishState()
|
||||
params = Params()
|
||||
@ -245,7 +255,7 @@ def main(demo=False, frogpilot_toggles=None):
|
||||
# Enable/disable nav features
|
||||
timestamp_llk = sm["navModel"].locationMonoTime
|
||||
nav_valid = sm.valid["navModel"] # and (nanos_since_boot() - timestamp_llk < 1e9)
|
||||
nav_enabled = nav_valid and params.get_bool("ExperimentalMode")
|
||||
nav_enabled = nav_valid and not DISABLE_NAV
|
||||
|
||||
if not nav_enabled:
|
||||
nav_features[:] = 0
|
||||
@ -266,6 +276,14 @@ def main(demo=False, frogpilot_toggles=None):
|
||||
if 0 <= distance_idx < 50:
|
||||
nav_instructions[distance_idx*3 + direction_idx] = 1
|
||||
|
||||
radar_tracks = np.zeros(ModelConstants.RADAR_TRACKS_LEN * ModelConstants.RADAR_TRACKS_WIDTH, dtype=np.float32)
|
||||
if sm.updated["liveTracks"]:
|
||||
for i, track in enumerate(sm["liveTracks"]):
|
||||
if i >= ModelConstants.RADAR_TRACKS_LEN:
|
||||
break
|
||||
vec_index = i * ModelConstants.RADAR_TRACKS_WIDTH
|
||||
radar_tracks[vec_index:vec_index+ModelConstants.RADAR_TRACKS_WIDTH] = [track.dRel, track.yRel, track.vRel]
|
||||
|
||||
# tracked dropped frames
|
||||
vipc_dropped_frames = max(0, meta_main.frame_id - last_vipc_frame_id - 1)
|
||||
frames_dropped = frame_dropped_filter.update(min(vipc_dropped_frames, 10))
|
||||
@ -283,8 +301,9 @@ def main(demo=False, frogpilot_toggles=None):
|
||||
'desire': vec_desire,
|
||||
'traffic_convention': traffic_convention,
|
||||
'lateral_control_params': lateral_control_params,
|
||||
'nav_features': nav_features,
|
||||
'nav_instructions': nav_instructions}
|
||||
**({'nav_features': nav_features, 'nav_instructions': nav_instructions} if not DISABLE_NAV else {}),
|
||||
**({'radar_tracks': radar_tracks,} if DISABLE_RADAR else {}),
|
||||
}
|
||||
|
||||
mt1 = time.perf_counter()
|
||||
model_output = model.run(buf_main, buf_extra, model_transform_main, model_transform_extra, inputs, prepare_only)
|
||||
|
@ -239,8 +239,10 @@ void OffroadHome::hideEvent(QHideEvent *event) {
|
||||
}
|
||||
|
||||
void OffroadHome::refresh() {
|
||||
QString model = QString::fromStdString(params.get("ModelName"));
|
||||
|
||||
date->setText(QLocale(uiState()->language.mid(5)).toString(QDateTime::currentDateTime(), "dddd, MMMM d"));
|
||||
version->setText(getBrand() + " v" + getVersion().left(14).trimmed());
|
||||
version->setText(getBrand() + " v" + getVersion().left(14).trimmed() + " - " + model);
|
||||
|
||||
bool updateAvailable = update_widget->refresh();
|
||||
int alerts = alerts_widget->refresh();
|
||||
|
@ -623,13 +623,13 @@ void AnnotatedCameraWidget::drawDriverState(QPainter &painter, const UIState *s)
|
||||
painter.restore();
|
||||
}
|
||||
|
||||
void AnnotatedCameraWidget::drawLead(QPainter &painter, const cereal::RadarState::LeadData::Reader &lead_data, const QPointF &vd) {
|
||||
void AnnotatedCameraWidget::drawLead(QPainter &painter, const cereal::ModelDataV2::LeadDataV3::Reader &lead_data, const QPointF &vd, const float v_ego) {
|
||||
painter.save();
|
||||
|
||||
const float speedBuff = 10.;
|
||||
const float leadBuff = 40.;
|
||||
const float d_rel = lead_data.getDRel();
|
||||
const float v_rel = lead_data.getVRel();
|
||||
const float d_rel = lead_data.getX()[0];
|
||||
const float v_rel = lead_data.getV()[0] - v_ego;
|
||||
|
||||
float fillAlpha = 0;
|
||||
if (d_rel < leadBuff) {
|
||||
@ -664,6 +664,7 @@ void AnnotatedCameraWidget::paintGL() {
|
||||
SubMaster &sm = *(s->sm);
|
||||
const double start_draw_t = millis_since_boot();
|
||||
const cereal::ModelDataV2::Reader &model = sm["modelV2"].getModelV2();
|
||||
const float v_ego = sm["carState"].getCarState().getVEgo();
|
||||
|
||||
// draw camera frame
|
||||
{
|
||||
@ -685,7 +686,6 @@ void AnnotatedCameraWidget::paintGL() {
|
||||
// Wide or narrow cam dependent on speed
|
||||
bool has_wide_cam = available_streams.count(VISION_STREAM_WIDE_ROAD);
|
||||
if (has_wide_cam) {
|
||||
float v_ego = sm["carState"].getCarState().getVEgo();
|
||||
if ((v_ego < 10) || available_streams.size() == 1) {
|
||||
wide_cam_requested = true;
|
||||
} else if (v_ego > 15) {
|
||||
@ -716,16 +716,16 @@ void AnnotatedCameraWidget::paintGL() {
|
||||
update_model(s, model, sm["uiPlan"].getUiPlan());
|
||||
drawLaneLines(painter, s);
|
||||
|
||||
if (s->scene.longitudinal_control && sm.rcv_frame("radarState") > s->scene.started_frame) {
|
||||
auto radar_state = sm["radarState"].getRadarState();
|
||||
update_leads(s, radar_state, model.getPosition());
|
||||
auto lead_one = radar_state.getLeadOne();
|
||||
auto lead_two = radar_state.getLeadTwo();
|
||||
if (lead_one.getStatus()) {
|
||||
drawLead(painter, lead_one, s->scene.lead_vertices[0]);
|
||||
}
|
||||
if (lead_two.getStatus() && (std::abs(lead_one.getDRel() - lead_two.getDRel()) > 3.0)) {
|
||||
drawLead(painter, lead_two, s->scene.lead_vertices[1]);
|
||||
if (s->scene.longitudinal_control && sm.rcv_frame("modelV2") > s->scene.started_frame) {
|
||||
update_leads(s, model);
|
||||
float prev_drel = -1;
|
||||
for (int i = 0; i < model.getLeadsV3().size() && i < 2; i++) {
|
||||
const auto &lead = model.getLeadsV3()[i];
|
||||
auto lead_drel = lead.getX()[0];
|
||||
if (lead.getProb() > scene.lead_detection_threshold && (prev_drel < 0 || std::abs(lead_drel - prev_drel) > 3.0)) {
|
||||
drawLead(painter, lead, s->scene.lead_vertices[i], v_ego);
|
||||
}
|
||||
prev_drel = lead_drel;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -174,7 +174,7 @@ protected:
|
||||
void showEvent(QShowEvent *event) override;
|
||||
void updateFrameMat() override;
|
||||
void drawLaneLines(QPainter &painter, const UIState *s);
|
||||
void drawLead(QPainter &painter, const cereal::RadarState::LeadData::Reader &lead_data, const QPointF &vd);
|
||||
void drawLead(QPainter &painter, const cereal::ModelDataV2::LeadDataV3::Reader &lead_data, const QPointF &vd, const float v_ego);
|
||||
void drawHud(QPainter &p);
|
||||
void drawDriverState(QPainter &painter, const UIState *s);
|
||||
inline QColor redColor(int alpha = 255) { return QColor(201, 34, 49, alpha); }
|
||||
|
@ -44,12 +44,15 @@ int get_path_length_idx(const cereal::XYZTData::Reader &line, const float path_h
|
||||
return max_idx;
|
||||
}
|
||||
|
||||
void update_leads(UIState *s, const cereal::RadarState::Reader &radar_state, const cereal::XYZTData::Reader &line) {
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
auto lead_data = (i == 0) ? radar_state.getLeadOne() : radar_state.getLeadTwo();
|
||||
if (lead_data.getStatus()) {
|
||||
float z = line.getZ()[get_path_length_idx(line, lead_data.getDRel())];
|
||||
calib_frame_to_full_frame(s, lead_data.getDRel(), -lead_data.getYRel(), z + 1.22, &s->scene.lead_vertices[i]);
|
||||
void update_leads(UIState *s, const cereal::ModelDataV2::Reader &model_data) {
|
||||
const cereal::XYZTData::Reader &line = model_data.getPosition();
|
||||
for (int i = 0; i < model_data.getLeadsV3().size() && i < 2; ++i) {
|
||||
const auto &lead = model_data.getLeadsV3()[i];
|
||||
if (lead.getProb() > s->scene.lead_detection_threshold) {
|
||||
float d_rel = lead.getX()[0];
|
||||
float y_rel = lead.getY()[0];
|
||||
float z = line.getZ()[get_path_length_idx(line, d_rel)];
|
||||
calib_frame_to_full_frame(s, d_rel, y_rel, z + 1.22, &s->scene.lead_vertices[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -108,10 +111,13 @@ void update_model(UIState *s,
|
||||
}
|
||||
|
||||
// update path
|
||||
auto lead_one = (*s->sm)["radarState"].getRadarState().getLeadOne();
|
||||
if (lead_one.getStatus()) {
|
||||
const float lead_d = lead_one.getDRel() * 2.;
|
||||
max_distance = std::clamp((float)(lead_d - fmin(lead_d * 0.35, 10.)), 0.0f, max_distance);
|
||||
auto lead_count = model.getLeadsV3().size();
|
||||
if (lead_count > 0) {
|
||||
auto lead_one = model.getLeadsV3()[0];
|
||||
if (lead_one.getProb() > scene.lead_detection_threshold) {
|
||||
const float lead_d = lead_one.getX()[0] * 2.;
|
||||
max_distance = std::clamp((float)(lead_d - fmin(lead_d * 0.35, 10.)), 0.0f, max_distance);
|
||||
}
|
||||
}
|
||||
max_idx = get_path_length_idx(plan_position, max_distance);
|
||||
update_line_data(s, plan_position, 0.9, 1.22, &scene.track_vertices, max_idx, false);
|
||||
@ -278,6 +284,10 @@ void ui_update_frogpilot_params(UIState *s) {
|
||||
scene.use_kaofui_icons = scene.onroad_distance_button && params.getBool("KaofuiIcons");
|
||||
|
||||
scene.experimental_mode_via_screen = scene.longitudinal_control && params.getBool("ExperimentalModeActivation") && params.getBool("ExperimentalModeViaTap");
|
||||
|
||||
bool longitudinal_tune = scene.longitudinal_control && params.getBool("LongitudinalTune");
|
||||
bool radarless_model = params.get("Model") == "radical-turtle";
|
||||
scene.lead_detection_threshold = longitudinal_tune && !radarless_model ? params.getInt("LeadDetectionThreshold") / 100.0f : 0.5;
|
||||
}
|
||||
|
||||
void UIState::updateStatus() {
|
||||
|
@ -205,6 +205,7 @@ typedef struct UIScene {
|
||||
bool use_kaofui_icons;
|
||||
|
||||
float adjusted_cruise;
|
||||
float lead_detection_threshold;
|
||||
|
||||
int alert_size;
|
||||
int conditional_speed;
|
||||
@ -303,7 +304,7 @@ void update_model(UIState *s,
|
||||
const cereal::ModelDataV2::Reader &model,
|
||||
const cereal::UiPlan::Reader &plan);
|
||||
void update_dmonitoring(UIState *s, const cereal::DriverStateV2::Reader &driverstate, float dm_fade_state, bool is_rhd);
|
||||
void update_leads(UIState *s, const cereal::RadarState::Reader &radar_state, const cereal::XYZTData::Reader &line);
|
||||
void update_leads(UIState *s, const cereal::ModelDataV2::Reader &model_data);
|
||||
void update_line_data(const UIState *s, const cereal::XYZTData::Reader &line,
|
||||
float y_off, float z_off, QPolygonF *pvd, int max_idx, bool allow_invert);
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user