carrot/selfdrive/controls/lib/drive_helpers.py

121 lines
4.8 KiB
Python
Raw Normal View History

import numpy as np
from cereal import log
from opendbc.car.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
2024-09-03 16:09:00 +09:00
from openpilot.common.realtime import DT_CTRL, DT_MDL
from openpilot.selfdrive.modeld.constants import ModelConstants
import numpy as np
MIN_SPEED = 1.0
CONTROL_N = 17
CAR_ROTATION_RADIUS = 0.0
# This is a turn radius smaller than most cars can achieve
MAX_CURVATURE = 0.2
MAX_VEL_ERR = 5.0 # m/s
# EU guidelines
MAX_LATERAL_JERK = 5.0 # m/s^3
MAX_LATERAL_ACCEL_NO_ROLL = 3.0 # m/s^2
2024-09-03 16:09:00 +09:00
MAX_CURVATURE_DELTA_FRAME = 0.03 #0.019 # about 3 degree / DT_CTRL
def apply_deadzone(error, deadzone):
if error > deadzone:
error -= deadzone
elif error < - deadzone:
error += deadzone
else:
error = 0.
return error
def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, steer_actuator_delay, distances):
2024-09-03 16:09:00 +09:00
if len(psis) != CONTROL_N:
psis = [0.0]*CONTROL_N
curvatures = [0.0]*CONTROL_N
distances = [0.0] * CONTROL_N
2024-09-03 16:09:00 +09:00
v_ego = max(MIN_SPEED, v_ego)
# TODO this needs more thought, use .2s extra for now to estimate other delays
delay = max(0.01, steer_actuator_delay)
# MPC can plan to turn the wheel and turn back before t_delay. This means
# in high delay cases some corrections never even get commanded. So just use
# psi to calculate a simple linearization of desired curvature
current_curvature_desired = curvatures[0]
delayed_curvature_desired = np.interp(delay, ModelConstants.T_IDXS[:CONTROL_N], curvatures)
future_curvature_desired = np.interp(1.2, ModelConstants.T_IDXS[:CONTROL_N], curvatures)
2024-09-03 16:09:00 +09:00
psi = np.interp(delay, ModelConstants.T_IDXS[:CONTROL_N], psis)
distance = max(np.interp(delay, ModelConstants.T_IDXS[:CONTROL_N], distances), 0.001)
#average_curvature_desired = psi / (v_ego * delay)
average_curvature_desired = psi / distance
desired_curvature = 2 * average_curvature_desired - current_curvature_desired
#curv_now = np.mean([abs(c) for c in curvatures[0:3]])
#curv_future = np.mean([abs(c) for c in curvatures[9:13]])
if (abs(current_curvature_desired) - abs(future_curvature_desired)) > 0.002 and abs(future_curvature_desired) < 0.001:
desired_curvature = delayed_curvature_desired
2024-09-03 16:09:00 +09:00
# This is the "desired rate of the setpoint" not an actual desired rate
max_curvature_rate = MAX_LATERAL_JERK / (v_ego**2) # inexact calculation, check https://github.com/commaai/openpilot/pull/24755
safe_desired_curvature = np.clip(desired_curvature,
current_curvature_desired - max_curvature_rate * DT_MDL,
current_curvature_desired + max_curvature_rate * DT_MDL)
return safe_desired_curvature
def clamp(val, min_val, max_val):
clamped_val = float(np.clip(val, min_val, max_val))
return clamped_val, clamped_val != val
def smooth_value(val, prev_val, tau, dt=DT_MDL):
alpha = 1 - np.exp(-dt/tau) if tau > 0 else 1
return alpha * val + (1 - alpha) * prev_val
def clip_curvature(v_ego, prev_curvature, new_curvature, roll):
# This function respects ISO lateral jerk and acceleration limits + a max curvature
v_ego = max(v_ego, MIN_SPEED)
max_curvature_rate = MAX_LATERAL_JERK / (v_ego ** 2) # inexact calculation, check https://github.com/commaai/openpilot/pull/24755
new_curvature = np.clip(new_curvature,
prev_curvature - max_curvature_rate * DT_CTRL,
prev_curvature + max_curvature_rate * DT_CTRL)
roll_compensation = roll * ACCELERATION_DUE_TO_GRAVITY
max_lat_accel = MAX_LATERAL_ACCEL_NO_ROLL + roll_compensation
min_lat_accel = -MAX_LATERAL_ACCEL_NO_ROLL + roll_compensation
new_curvature, limited_accel = clamp(new_curvature, min_lat_accel / v_ego ** 2, max_lat_accel / v_ego ** 2)
new_curvature, limited_max_curv = clamp(new_curvature, -MAX_CURVATURE, MAX_CURVATURE)
2024-09-03 16:09:00 +09:00
new_curvature = np.clip(
new_curvature,
prev_curvature - MAX_CURVATURE_DELTA_FRAME,
prev_curvature + MAX_CURVATURE_DELTA_FRAME
)
was_limited = limited_accel or limited_max_curv or (abs(new_curvature - prev_curvature) >= MAX_CURVATURE_DELTA_FRAME)
2024-09-03 16:09:00 +09:00
return float(new_curvature), was_limited
def get_speed_error(modelV2: log.ModelDataV2, v_ego: float) -> float:
# ToDo: Try relative error, and absolute speed
if len(modelV2.temporalPose.trans):
vel_err = np.clip(modelV2.temporalPose.trans[0] - v_ego, -MAX_VEL_ERR, MAX_VEL_ERR)
return float(vel_err)
return 0.0
2025-04-18 20:38:55 +09:00
def get_accel_from_plan(speeds, accels, t_idxs, action_t=DT_MDL, vEgoStopping=0.05):
2025-04-18 20:38:55 +09:00
if len(speeds) == len(t_idxs):
v_now = speeds[0]
a_now = accels[0]
v_target = np.interp(action_t, t_idxs, speeds)
a_target = 2 * (v_target - v_now) / (action_t) - a_now
v_target_1sec = np.interp(action_t + 1.0, t_idxs, speeds)
else:
v_target = 0.0
v_target_1sec = 0.0
a_target = 0.0
should_stop = (v_target < vEgoStopping and
v_target_1sec < vEgoStopping)
return a_target, should_stop