carrot/system/camerad/sensors/os04c10_cl.h

59 lines
1.7 KiB
C
Raw Normal View History

#if SENSOR_ID == 3
#define BGGR
#define VIGNETTE_PROFILE_4DT6MM
#define BIT_DEPTH 12
#define PV_MAX10 1023
#define PV_MAX12 4095
#define PV_MAX16 65536 // gamma curve is calibrated to 16bit
#define BLACK_LVL 48
float combine_dual_pvs(float lv, float sv, int expo_time) {
float svc = fmax(sv * expo_time, (float)(64 * (PV_MAX10 - BLACK_LVL)));
float svd = sv * fmin(expo_time, 8.0) / 8;
if (expo_time > 64) {
if (lv < PV_MAX10 - BLACK_LVL) {
return lv / (PV_MAX16 - BLACK_LVL);
} else {
return (svc / 64) / (PV_MAX16 - BLACK_LVL);
}
} else {
if (lv > 32) {
return (lv * 64 / fmax(expo_time, 8.0)) / (PV_MAX16 - BLACK_LVL);
} else {
return svd / (PV_MAX16 - BLACK_LVL);
}
}
}
float4 normalize_pv_hdr(int4 parsed, int4 short_parsed, float vignette_factor, int expo_time) {
float4 pl = convert_float4(parsed - BLACK_LVL);
float4 ps = convert_float4(short_parsed - BLACK_LVL);
float4 pv;
pv.s0 = combine_dual_pvs(pl.s0, ps.s0, expo_time);
pv.s1 = combine_dual_pvs(pl.s1, ps.s1, expo_time);
pv.s2 = combine_dual_pvs(pl.s2, ps.s2, expo_time);
pv.s3 = combine_dual_pvs(pl.s3, ps.s3, expo_time);
return clamp(pv*vignette_factor, 0.0, 1.0);
}
float4 normalize_pv(int4 parsed, float vignette_factor) {
float4 pv = (convert_float4(parsed) - BLACK_LVL) / (PV_MAX12 - BLACK_LVL);
return clamp(pv*vignette_factor, 0.0, 1.0);
}
float3 color_correct(float3 rgb) {
float3 corrected = rgb.x * (float3)(1.55361989, -0.268894615, -0.000593219);
corrected += rgb.y * (float3)(-0.421217301, 1.51883144, -0.69760146);
corrected += rgb.z * (float3)(-0.132402589, -0.249936825, 1.69819468);
return corrected;
}
float3 apply_gamma(float3 rgb, int expo_time) {
return (10 * rgb) / (1 + 9 * rgb);
}
#endif