226 lines
13 KiB
Python
Raw Normal View History

import functools, struct
from tinygrad.device import Compiled, Allocator, Compiler, BufferSpec
from tinygrad.renderer.wgsl import WGSLRenderer
from tinygrad.helpers import round_up
2025-04-18 20:38:55 +09:00
from tinygrad.runtime.autogen import webgpu
from typing import List, Any, TypeAlias
2025-04-18 20:38:55 +09:00
import ctypes
import os
WGPUDevPtr: TypeAlias = webgpu.WGPUDevice # type: ignore
WGPUBufPtr: TypeAlias = webgpu.WGPUBuffer # type: ignore
2025-04-18 20:38:55 +09:00
backend_types = {v: k for k, v in webgpu.WGPUBackendType__enumvalues.items() }
instance = webgpu.wgpuCreateInstance(webgpu.WGPUInstanceDescriptor(features = webgpu.WGPUInstanceFeatures(timedWaitAnyEnable = True)))
def to_c_string(_str:str) -> ctypes.Array: return ctypes.create_string_buffer(_str.encode('utf-8'))
2025-04-18 20:38:55 +09:00
def from_wgpu_str(string_view:webgpu.struct_WGPUStringView) -> str: return ctypes.string_at(string_view.data, string_view.length).decode("utf-8")
2025-04-18 20:38:55 +09:00
def to_wgpu_str(_str:str) -> webgpu.struct_WGPUStringView:
2025-04-18 20:38:55 +09:00
return webgpu.WGPUStringView(data=ctypes.cast(ctypes.pointer(to_c_string(_str)), ctypes.POINTER(ctypes.c_char)), length=len(_str))
def _wait(future:webgpu.struct_WGPUFuture):
2025-04-18 20:38:55 +09:00
assert webgpu.wgpuInstanceWaitAny(instance, 1, webgpu.WGPUFutureWaitInfo(future=future), 2**64-1) == webgpu.WGPUWaitStatus_Success, "Future failed"
def write_buffer(device:WGPUDevPtr, buf:WGPUBufPtr, offset:int, src:memoryview|bytearray|bytes):
2025-04-18 20:38:55 +09:00
src = bytearray(src)
webgpu.wgpuQueueWriteBuffer(webgpu.wgpuDeviceGetQueue(device), buf, offset, (ctypes.c_uint8 * len(src)).from_buffer(src), len(src))
def _run(async_fun, cb_info_type, cb_type, status_enum, res_idx:int|None, msg_idx:int|None, *params):
2025-04-18 20:38:55 +09:00
result: List[Any] = []
def cb(*params):
result[:] = params
if msg_idx: result[msg_idx] = from_wgpu_str(result[msg_idx])
cb_info = cb_info_type(nextInChain=None, mode=webgpu.WGPUCallbackMode_WaitAnyOnly, callback=cb_type(cb))
_wait(async_fun(*params, cb_info))
if result[0] != 1: raise RuntimeError(f"[{status_enum[result[0]] if status_enum else 'ERROR'}]{result[msg_idx] if msg_idx else ''}")
return result[res_idx] if res_idx else None
def copy_buffer_to_buffer(dev:WGPUDevPtr, src:WGPUBufPtr, src_offset:int, dst:WGPUBufPtr, dst_offset:int, size:int):
2025-04-18 20:38:55 +09:00
encoder = webgpu.wgpuDeviceCreateCommandEncoder(dev, webgpu.WGPUCommandEncoderDescriptor())
webgpu.wgpuCommandEncoderCopyBufferToBuffer(encoder, src, src_offset, dst, dst_offset, size)
cb = webgpu.wgpuCommandEncoderFinish(encoder, webgpu.WGPUCommandBufferDescriptor())
webgpu.wgpuQueueSubmit(webgpu.wgpuDeviceGetQueue(dev), 1, (webgpu.WGPUCommandBuffer*1)(cb))
webgpu.wgpuCommandBufferRelease(cb)
webgpu.wgpuCommandEncoderRelease(encoder)
def read_buffer(dev:WGPUDevPtr, buf:WGPUBufPtr) -> memoryview:
2025-04-18 20:38:55 +09:00
size = webgpu.wgpuBufferGetSize(buf)
tmp_buffer = webgpu.wgpuDeviceCreateBuffer(dev, webgpu.WGPUBufferDescriptor(size=size,
usage=webgpu.WGPUBufferUsage_CopyDst | webgpu.WGPUBufferUsage_MapRead, mappedAtCreation=False))
copy_buffer_to_buffer(dev, buf, 0, tmp_buffer, 0, size)
_run(webgpu.wgpuBufferMapAsync2, webgpu.WGPUBufferMapCallbackInfo2, webgpu.WGPUBufferMapCallback2, webgpu.WGPUBufferMapAsyncStatus__enumvalues,
None, 0, tmp_buffer, webgpu.WGPUMapMode_Read, 0, size)
void_ptr = ctypes.cast(webgpu.wgpuBufferGetConstMappedRange(tmp_buffer, 0, size), ctypes.c_void_p)
buf_copy = bytearray((ctypes.c_uint8 * size).from_address(void_ptr.value))
webgpu.wgpuBufferUnmap(tmp_buffer)
webgpu.wgpuBufferDestroy(tmp_buffer)
return memoryview(buf_copy).cast("B")
def pop_error(device:WGPUDevPtr) -> str:
2025-04-18 20:38:55 +09:00
return _run(webgpu.wgpuDevicePopErrorScopeF, webgpu.WGPUPopErrorScopeCallbackInfo, webgpu.WGPUPopErrorScopeCallback, None, 2, 2, device)
def create_uniform(wgpu_device:WGPUDevPtr, val:int|float) -> WGPUBufPtr:
2025-04-18 20:38:55 +09:00
buf = webgpu.wgpuDeviceCreateBuffer(wgpu_device,
webgpu.WGPUBufferDescriptor(size=4, usage=webgpu.WGPUBufferUsage_Uniform | webgpu.WGPUBufferUsage_CopyDst))
write_buffer(wgpu_device, buf, 0, val.to_bytes(4, "little") if isinstance(val, int) else struct.pack('<f', val))
return buf
class WebGPUProgram:
def __init__(self, dev:tuple[WGPUDevPtr, bool], name:str, lib:bytes):
(self.dev, self.timestamp_supported) = dev
2025-04-18 20:38:55 +09:00
# Creating shader module
shader = webgpu.WGPUShaderModuleWGSLDescriptor(code=to_wgpu_str(lib.decode()),
chain=webgpu.WGPUChainedStruct(sType=webgpu.WGPUSType_ShaderSourceWGSL))
module = webgpu.WGPUShaderModuleDescriptor()
module.nextInChain = ctypes.cast(ctypes.pointer(shader), ctypes.POINTER(webgpu.struct_WGPUChainedStruct))
# Check compiler error
webgpu.wgpuDevicePushErrorScope(self.dev, webgpu.WGPUErrorFilter_Validation)
shader_module = webgpu.wgpuDeviceCreateShaderModule(self.dev, module)
if err := pop_error(self.dev): raise RuntimeError(f"Shader compilation failed: {err}")
self.name, self.lib, self.prg = name, lib, shader_module
def __call__(self, *bufs:WGPUBufPtr, global_size:tuple[int,int,int]=(1,1,1), local_size:tuple[int,int,int]=(1,1,1),
vals:tuple[int, ...]=(), wait=False) -> float|None:
wait = wait and self.timestamp_supported
2025-04-18 20:38:55 +09:00
tmp_bufs = [*bufs]
buf_patch = False
# WebGPU does not allow using the same buffer for input and output
for i in range(1, len(bufs)):
if ctypes.addressof(bufs[i]) == ctypes.addressof(bufs[0]):
2025-04-18 20:38:55 +09:00
tmp_bufs[0] = webgpu.wgpuDeviceCreateBuffer(self.dev,
webgpu.WGPUBufferDescriptor(size=webgpu.wgpuBufferGetSize(bufs[0]), usage=webgpu.wgpuBufferGetUsage(bufs[0])))
buf_patch = True
# Creating bind group layout
binding_layouts = [webgpu.WGPUBindGroupLayoutEntry(binding=0, visibility= webgpu.WGPUShaderStage_Compute,
buffer=webgpu.WGPUBufferBindingLayout(type=webgpu.WGPUBufferBindingType_Uniform))]
binding_layouts += [webgpu.WGPUBindGroupLayoutEntry(binding=i+1, visibility=webgpu.WGPUShaderStage_Compute,
buffer=webgpu.WGPUBufferBindingLayout(type=webgpu.WGPUBufferBindingType_Uniform if i >= len(tmp_bufs)
else webgpu.WGPUBufferBindingType_Storage)) for i in range(len(tmp_bufs)+len(vals))]
bl_arr_type = webgpu.WGPUBindGroupLayoutEntry * len(binding_layouts)
webgpu.wgpuDevicePushErrorScope(self.dev, webgpu.WGPUErrorFilter_Validation)
bind_group_layouts = [webgpu.wgpuDeviceCreateBindGroupLayout(self.dev, webgpu.WGPUBindGroupLayoutDescriptor(
entryCount=len(binding_layouts), entries=ctypes.cast(bl_arr_type(*binding_layouts), ctypes.POINTER(webgpu.WGPUBindGroupLayoutEntry))))]
if bg_layout_err := pop_error(self.dev): raise RuntimeError(f"Error creating bind group layout: {bg_layout_err}")
# Creating pipeline layout
pipeline_layout_desc = webgpu.WGPUPipelineLayoutDescriptor(bindGroupLayoutCount=len(bind_group_layouts),
bindGroupLayouts = (webgpu.WGPUBindGroupLayout * len(bind_group_layouts))(*bind_group_layouts))
webgpu.wgpuDevicePushErrorScope(self.dev, webgpu.WGPUErrorFilter_Validation)
pipeline_layout = webgpu.wgpuDeviceCreatePipelineLayout(self.dev, pipeline_layout_desc)
if pipe_err := pop_error(self.dev): raise RuntimeError(f"Error creating pipeline layout: {pipe_err}")
# Creating bind group
bindings = [webgpu.WGPUBindGroupEntry(binding=0, buffer=create_uniform(self.dev, float('inf')), offset=0, size=4)]
bindings += [webgpu.WGPUBindGroupEntry(binding=i+1, buffer=create_uniform(self.dev, x) if i >= len(tmp_bufs) else x, offset=0,
size=4 if i >= len(tmp_bufs) else webgpu.wgpuBufferGetSize(x)) for i,x in enumerate(tuple(tmp_bufs)+vals)]
bg_arr_type = webgpu.WGPUBindGroupEntry * len(bindings)
bind_group_desc = webgpu.WGPUBindGroupDescriptor(layout=bind_group_layouts[0], entryCount=len(bindings), entries=bg_arr_type(*bindings))
webgpu.wgpuDevicePushErrorScope(self.dev, webgpu.WGPUErrorFilter_Validation)
bind_group = webgpu.wgpuDeviceCreateBindGroup(self.dev, bind_group_desc)
if bind_err := pop_error(self.dev): raise RuntimeError(f"Error creating bind group: {bind_err}")
# Creating compute pipeline
compute_desc = webgpu.WGPUComputePipelineDescriptor(layout=pipeline_layout,
compute=webgpu.WGPUComputeState(module=self.prg, entryPoint=to_wgpu_str(self.name)))
pipeline_result = _run(webgpu.wgpuDeviceCreateComputePipelineAsync2, webgpu.WGPUCreateComputePipelineAsyncCallbackInfo2,
webgpu.WGPUCreateComputePipelineAsyncCallback2, webgpu.WGPUCreatePipelineAsyncStatus__enumvalues, 1, None, self.dev, compute_desc)
command_encoder = webgpu.wgpuDeviceCreateCommandEncoder(self.dev, webgpu.WGPUCommandEncoderDescriptor())
comp_pass_desc = webgpu.WGPUComputePassDescriptor(nextInChain=None)
if wait:
2025-04-18 20:38:55 +09:00
query_set = webgpu.wgpuDeviceCreateQuerySet(self.dev, webgpu.WGPUQuerySetDescriptor(type=webgpu.WGPUQueryType_Timestamp, count=2))
query_buf = webgpu.wgpuDeviceCreateBuffer(self.dev,
webgpu.WGPUBufferDescriptor(size=16, usage=webgpu.WGPUBufferUsage_QueryResolve | webgpu.WGPUBufferUsage_CopySrc))
comp_pass_desc.timestampWrites = ctypes.pointer(webgpu.WGPUComputePassTimestampWrites(
querySet=query_set, beginningOfPassWriteIndex=0, endOfPassWriteIndex=1))
# Begin compute pass
compute_pass = webgpu.wgpuCommandEncoderBeginComputePass(command_encoder, comp_pass_desc)
webgpu.wgpuComputePassEncoderSetPipeline(compute_pass, pipeline_result)
webgpu.wgpuComputePassEncoderSetBindGroup(compute_pass, 0, bind_group, 0, None)
webgpu.wgpuComputePassEncoderDispatchWorkgroups(compute_pass, *global_size)
webgpu.wgpuComputePassEncoderEnd(compute_pass)
if wait: webgpu.wgpuCommandEncoderResolveQuerySet(command_encoder, query_set, 0, 2, query_buf, 0)
cmd_buf = webgpu.wgpuCommandEncoderFinish(command_encoder, webgpu.WGPUCommandBufferDescriptor())
webgpu.wgpuQueueSubmit(webgpu.wgpuDeviceGetQueue(self.dev), 1, (webgpu.WGPUCommandBuffer*1)(cmd_buf))
if buf_patch:
copy_buffer_to_buffer(self.dev, tmp_bufs[0], 0, bufs[0], 0, webgpu.wgpuBufferGetSize(bufs[0]))
webgpu.wgpuBufferDestroy(tmp_bufs[0])
if wait:
2025-04-18 20:38:55 +09:00
time = ((timestamps:=read_buffer(self.dev, query_buf).cast("Q").tolist())[1] - timestamps[0]) / 1e9
webgpu.wgpuBufferDestroy(query_buf)
webgpu.wgpuQuerySetDestroy(query_set)
return time
return None
class WebGpuAllocator(Allocator['WGPUDevPtr']):
def _alloc(self, size:int, options:BufferSpec) -> WGPUBufPtr:
2025-04-18 20:38:55 +09:00
# WebGPU buffers have to be 4-byte aligned
return webgpu.wgpuDeviceCreateBuffer(self.dev, webgpu.WGPUBufferDescriptor(size=round_up(size, 4),
usage=webgpu.WGPUBufferUsage_Storage | webgpu.WGPUBufferUsage_CopyDst | webgpu.WGPUBufferUsage_CopySrc))
def _copyin(self, dest:WGPUBufPtr, src:memoryview):
if src.nbytes % 4:
padded_src = bytearray(round_up(src.nbytes, 4))
padded_src[:src.nbytes] = src
2025-04-18 20:38:55 +09:00
write_buffer(self.dev, dest, 0, padded_src if src.nbytes % 4 else src)
def _copyout(self, dest:memoryview, src:WGPUBufPtr):
2025-04-18 20:38:55 +09:00
buffer_data = read_buffer(self.dev, src)
dest[:] = buffer_data[:dest.nbytes] if webgpu.wgpuBufferGetSize(src) > dest.nbytes else buffer_data
def _free(self, opaque:WGPUBufPtr, options:BufferSpec):
2025-04-18 20:38:55 +09:00
webgpu.wgpuBufferDestroy(opaque)
class WebGpuDevice(Compiled):
def __init__(self, device:str):
2025-04-18 20:38:55 +09:00
# Requesting an adapter
adapter_res = _run(webgpu.wgpuInstanceRequestAdapterF, webgpu.WGPURequestAdapterCallbackInfo, webgpu.WGPURequestAdapterCallback,
webgpu.WGPURequestAdapterStatus__enumvalues, 1, 2, instance,
webgpu.WGPURequestAdapterOptions(powerPreference=webgpu.WGPUPowerPreference_HighPerformance,
backendType=backend_types.get(os.getenv("WEBGPU_BACKEND", ""), 0)))
# Get supported features
supported_features = webgpu.WGPUSupportedFeatures()
webgpu.wgpuAdapterGetFeatures(adapter_res, supported_features)
supported = [supported_features.features[i] for i in range(supported_features.featureCount)]
features = [feat for feat in [webgpu.WGPUFeatureName_TimestampQuery, webgpu.WGPUFeatureName_ShaderF16] if feat in supported]
dev_desc = webgpu.WGPUDeviceDescriptor(requiredFeatureCount=len(features),requiredFeatures=(webgpu.WGPUFeatureName * len(features))(*features))
# Limits
supported_limits = webgpu.WGPUSupportedLimits()
webgpu.wgpuAdapterGetLimits(adapter_res, ctypes.cast(ctypes.pointer(supported_limits),ctypes.POINTER(webgpu.struct_WGPUSupportedLimits)))
limits = webgpu.WGPURequiredLimits(limits=supported_limits.limits)
dev_desc.requiredLimits = ctypes.cast(ctypes.pointer(limits),ctypes.POINTER(webgpu.struct_WGPURequiredLimits))
# Requesting a device
device_res = _run(webgpu.wgpuAdapterRequestDeviceF, webgpu.WGPURequestDeviceCallbackInfo, webgpu.WGPURequestDeviceCallback,
webgpu.WGPURequestDeviceStatus__enumvalues, 1, 2, adapter_res, dev_desc)
super().__init__(device, WebGpuAllocator(device_res), WGSLRenderer(), Compiler(),
functools.partial(WebGPUProgram, (device_res, webgpu.WGPUFeatureName_TimestampQuery in supported)))
def synchronize(self):
_run(webgpu.wgpuQueueOnSubmittedWorkDone2, webgpu.WGPUQueueWorkDoneCallbackInfo2, webgpu.WGPUQueueWorkDoneCallback2,
webgpu.WGPUQueueWorkDoneStatus__enumvalues, None, None, webgpu.wgpuDeviceGetQueue(self.runtime.args[0][0]))